

Mesure de traces de radioactivité dans l'environnement par spectrométrie γ en coïncidence

H.-D. Lenouvel¹, P. Gross¹, A. De-Vismes Ott¹, M. Morin¹, S. Topin^{1,2}, J. Aupiais¹, H. Paradis¹

¹ CEA, DAM, DIF, F-91297 Arpajon, France

² CNAM, Analyse Chimique et Bioanalyse, EPN-7, 292 rue Saint Martin, 75003 Paris, France

Auteur correspondant : hugues.paradis@cea.fr

Mesure de traces dans l'environnement

Les missions du service de surveillance de l'environnement du CEA/DAM

□ Étude et expertise de <u>l'impact environnemental</u> des installations de la DAM.

Contrôle des traités internationaux : Traité d'Interdiction Complète des Essais nucléaires (TICE-1996), Traité de Non Prolifération (TNP-1968).

Anti-terrorisme NRBC (Nucléaire, Radiologique, Biologique, Chimique).

Des analyses sous assurance qualité

- □ Analyses COFRAC selon la norme ISO EN NF 17025 (v2017) :
 - > 27 lignes sur la portée d'accréditation
 - Spectrométrie γ et α , compteur proportionnel, scintillation liquide, spectrométrie de masse

- > Spectrométrie γ et β
- Procédés spécifiques gaz
- Niveau d'exigence élevé :
 - Incertitudes : 1<U<20% (*k*=2)
 - Sensibilité (LD) :
 - 10⁻⁵ Bq/kg (spectrométrie α et spectrométrie de masse)
 - 1 Bq/kg (³H)
 - 10⁻² Bq/kg (spectrométrie γ)...
- Audits fréquents (2 par an)

Les échantillons

- Préparation au sein du service (séchage, broyage, calcination, purification, chimie et radiochimie)
- Conditionnement dans des géométries spécifiques (solides, liquides, biologiques)
- □ Transfert dans des cellules de comptage (gaz)

5

La spectrométrie γ

- > La plupart des radionucléides émettent un ou plusieurs photons γ à des énergies caractéristiques
- Méthode de mesure rapide, non destructive, <u>qualitative</u> et <u>quantitative</u>.

[1] A. Berlizov, A correlated particle source extension of a general purpose Monte Carlo N-Particle transport code, MCNP-CP Upgrade Patch Version 3.2, Institute for Nuclear Research National Academy of Sciences of Ukraine, 2012

→ Utilisation de la simulation pour le calcul de rendements de détection

Le Gamma³ : dispositif de détection de radionucléides présents à l'échelle de traces dans l'environnement

- Gamma³ au sein du laboratoire certifié [2] :
 - 3 spectromètres Gamma (HPGe)
 - Blindage optimisé

□ Mesure en coïncidence :

- Plusieurs détecteurs
- Synchronisation temporelle
- Signatures caractéristiques des radionucléides
- →Bruit de fond très faible

 Détecteur 1
 Détecteur 2

 Fig 2. Schéma d'un dispositif pour la mesure en coïncidence

Échantillon

[2] A. Cagniant, et al., An introduction to γ^3 a new versatile ultralow background gamma spectrometer. Background description and analysis, Applied Radiation and Isotopes 98 (2015)

Construction du modèle numérique des détecteurs

Simulation MCNP

9

Création d'un modèle avec MCNP

- Modélisation à partir :
 - Plans techniques fournis par le fabricant
 - Radiographies des détecteurs

Fig 4. Radiographie d'un détecteur HPGe (BEGe5030P)

□ Sources étalons:

- Plage en énergie : [22 2505 keV]
- Géométries :
- Filtres aérosols (diamètre de 110 mm)
- Géométries volumiques (de 20 mL à 500 mL)

- Fig 6. Les différentes géométries utilisées sur le Gamma³
- → Utilisation de géométries très différentes pour un étalonnage général

Optimisation des modèles de détecteurs

Validation sur des échantillons de référence

coïncidences γ/γ coïncidences β/γ

Apports de la coïncidence γ/γ (exemple du ¹³⁴Cs)

□ Mesure d'un échantillon de produits de fission frais de l'OTICE:

- > ~ 300 pics
- ~45 radionucléides
- Nombreuses interférences
- Fond continu élevé
- Activités allant de 7E-02 Bq à 5,5E+01 Bq
- 2 opérateurs à temps plein sur 2 semaines

Fig 8. Schéma de désintégration du ¹³⁴Cs

Fig 9. Filtre aérosol placé entre deux HPGe

→ Important RSB permettant une qualification et une quantification plus facile pour certains radionucléides

Validation de la méthode sur un échantillon de l'AIÈÀ

Frottis de référence de l'AIEA

□ Mesure :

- ATHOS&ARAMIS
- Durée : 316800 s
- Rendements d'absorption totale:
 Calculés avec MCNP-CP

□ Analyse :

Radionucléides	A _{ref} (Bq)	<i>U</i> (<i>A_{ref}</i>) <i>k</i> =2 (Bq)	A _{mes} (Bq)	U(A _{mes}) k=2 (Bq)	Écarts (%)	<i>E</i> _n score
^{110m} Ag	7.51	0.09	7.36	0.70	-2.0	-0.21
¹³⁹ Ce	7.51	0.09	6.7	1.1	-11.0	-0.78
¹³⁴ Cs	7.56	0.07	7.75	0.79	2.5	0.24
¹⁵² Eu	7.55	0.07	8.0	0.8	5.7	0.55
²³⁵ U	0.0747	0.0009	0.062	0.027	-16.2	-0.46

- Détection de radionucléides (¹³⁴Cs) avec une signature en spectrométrie γ classique difficilement détectable
- Validation de la méthode utilisant la simulation en spectrométrie γ classique et en coïncidence γ/γ

Tab 1. Comparaison entre les activités de référence et mesurées

Validation de la méthode sur un échantillon gazeux

Échantillon gazeux de référence composé de 4 radioxénons

Mesure :

- ➢ (ATHOS+ARAMIS)&PIPSBox
- Durée : 57600 s
- Rendements d'absorption totale:
 - Calculés avec MCNP-CP

$131m$ Xe 0.16 ± 0.02 133 Xe 0.20 ± 0.02 $132m$ X 0.447 ± 0.022
133 Xe 0.20 ± 0.02
122m)/ 0.447.0000
0.147 ± 0.023
¹³⁵ Xe 0.176 ± 0.016

Tab 2. Rendements de détection β/γ des 4 radioxénons

Analyse :

RXe	A _{ref} (Bq)	U(A _{ref}) k=2 (Bq)	A _{mes} (Bq)	U(A _{mes}) k=2 (Bq)	Écart (%)	<i>E_n</i> score
^{131m} Xe	94	10	84	13	-10.6	-0.60
¹³³ Xe	204	23	205	19	0.8	0.06
^{133m} Xe	10.2	1.1	9.1	1.4	-11.3	-0.63
¹³⁵ Xe	217	22	226	21	4.0	0.29

Tab 3. Comparaison entre les activités de référence et mesurées

- Validation de la méthode utilisant la simulation en spectrométrie γ classique et en coïncidence β/γ
- H.-D. Lenouvel, et al., Measurement of radioxenon isotopes for nuclear explosion detection using coincident β/γ detector calibrated by simulation, Applied Radiation and Isotopes. DOI : ARI 111886

Limites de détection

Calcul des seuils de décision (SD) et de limites de détection (LD) sur un mouvement propre :

- Norme ISO 11929
- > Comparaison entre la spectrométrie classique et en coïncidence

Léchantillons d'aérosols :

	Radionucléides	Spectrométrie γ : SD / LD (mBq)	Spectrométrie en γ/γ : SD / LD (mBq)
	^{108m} Ag	2.03 / 4.2	0.39 / 2.9
	^{110m} Ag	2.44 / 5.0	3.67 / 26.4
Tab 4. Comparaison des SD et	⁶⁰ Co	1.81 / 3.8	0.60 / 4.3
LD entre la spectrométrie γ et	¹²⁵ Sb	5.31 / 10.9	5.39 / 19.0
d'aérosols	¹³⁴ Cs	1.75 / 3.6	0.71 / 3.2

 → Pour certains radionucléides : P * ε très faible → LD_{γγ} > LD_γ

 → SD_{γγ} souvent très avantageux →

qualification d'échantillon plus sensible

Échantillons de gaz nobles :

	Radionucléides	Spectrométrie γ : LD (mBq)	Spectrométrie β/γ : LD (mBq)
	^{131m} Xe	73	0.3
Tab 5. Comparaison des SD et LD entre la spectrométrie γ et	¹³³ Xe	3.3	1.0
eta/γ pour les mesures de gaz nobles	^{133m} Xe	33	0.2
	¹³⁵ Xe	18.3	4.3

 Spectrométrie β/γ très avantageuse pour les radioxénons métastables

Conclusions

Conclusions

- Raccordement métrologique par la simulation à partir de sources étalons
 - > Détermination des rendements d'absorption totale par la simulation
- □ Validation de cette méthode :
 - Gaz nobles : H.-D. Lenouvel, et al., Measurement of radioxenon isotopes for nuclear explosion detection using coincident β/γ detector calibrated by simulation, Applied Radiation and Isotopes. DOI : ARI 111886
 - Aérosols : Mesures dans le cadre d'exercices d'intercomparaison pour l'OTICE et l'AIEA

RXe	A _{ref} (Bq)	U(A _{ref}) k=2 (Bq)	A _{mes} (Bq)	U(A _{mes}) k=2 (Bq)	<i>E_n</i> score
^{131m} Xe	94	10	84	13	-0.60
¹³³ Xe	204	23	205	19	0.06
^{133m} Xe	10.2	1.1	9.1	1.4	-0.63
¹³⁵ Xe	217	22	226	21	0.29

Radionucléides	<i>A_{ref}</i> (Bq)	U(A _{ref}) k=2 (Bq)	A _{mes} (Bq)	U(A _{mes}) k=2 (Bq)	E _n score
^{110m} Ag	7.51	0.09	7.36	0.70	-0.21
¹³⁹ Ce	7.51	0.09	6.7	1.1	-0.78
¹³⁴ Cs	7.56	0.07	7.75	0.79	0.24
¹⁵² Eu	7.55	0.07	8.0	0.8	0.55
²³⁵ U	0.0747	0.0009	0.062	0.027	-0.46

[3] Nucleonica website, www.nucleonica.com

- Identification d'empreintes caractéristiques dans le spectre \geq
- Entrée : Matrices (=images) \geq

- Convolutional Neural Network (CNN) :

Toute l'information du spectre est utilisée

- Site internet Nucleonica [6] : distribution à partir de la fission d'²³⁵U (Uranium Hautement Enrichi) avec des neutrons rapides de 14 MeV

Produits de fission :

 \triangleright

 \geq

SFRP 2025

- Matrices volumineuses (8k*8k canaux) \rightarrow (2k*2k canaux) \succ
- Base de données (~1M):
- \Box Objectif : Classification sur des échantillons aérosols (coïncidence γ/γ) dans le cadre du TICE

Evolution dans le temps des mélanges de t_o à 1 an (équation de Bateman) : 100 itérations

Merci pour votre attention

- ~90 radionucléides d'intérêt (produits de fission et d'activation)

Fig 15. Topaze High-Performance Computing (HPC) system (CEA)

Annexes

Traité d'Interdiction Complète des Essais nucléaires

Nombreuses campagnes d'essais nucléaires
TICE ouvert en 1996 [4]

Detections at IMS Stations Using Isotopic Activity Ratio Analysis, Pure Appl. Geophys. 180 (2023), 1521-1540 → La composante radionucléide permet de valider le caractère nucléaire d'une explosion

>

Gamma³ : configuration pour une mesure d'un échantillon de gaz nobles

- 2 HPGe : détection de photons
- 2 PIPS : détection d'électrons
- ➤ La PIPSBoxTM est placée entre ATHOS et ARAMIS

Fig 18. (ATHOS+ARAMIS)&PIPSBox

Calcul d'activité et incertitudes

 $U_{model} \sim 9\%$ au-dessus de 60 keV

[6] A. Berlizov, *A correlated particle source extension of a general purpose Monte Carlo N-Particle transport code*, MCNP-CP Upgrade Patch Version 3.2, Institute for Nuclear Research National Academy of Sciences of Ukraine, 2012

2 SFRP 2025

Validation avec le **score** E_n décrit dans la norme ISO 13528 :

$$E_N = \frac{A_i - A_{ref}}{\sqrt{U^2(A_i) + U^2(A_{ref})}}$$

Si $-1 < E_N < 1$ \rightarrow Validation du résultat

Quantifier la sensibilité d'une méthode d'analyse

Sensibilité 🗇 capacité à détecter une source radioactive de faible activité

La sensibilité est quantifiée avec deux grandeurs :

- Le seuil de décision (SD) : seuil à partir duquel une fluctuation statistique est considérée comme significative.
- La limite de détection (LD) : activité maximale qui pourrait être présente dans l'échantillon si l'activité trouvée est inférieure au SD.

SFRP 2025