Conseils

Assistance

Radioprotection

LES MESURES DE CONTAMINATION

EN PRATIQUE & VU PAR UNE PCR

SOMMAIRE

1	
	Pourquoi des mesures de contamination ?
2	
	Comment réaliser des mesures de contamination ?
3	
	Les mesures de contamination de surface
4	
	Interprétation des résultats
5	
	Passer de c/s en Bq/cm²

POURQUOI RÉALISE-T-ON DES MESURES DE CONTAMINATION ?

- 1. Détecter la présence de radioactivité
- 2. Quantifier la radioactivité d'un échantillon
- 3. Qualifier la nature des sources

- _
- Dès que votre installation emploie des sources non scellées, ou
- 2. Pour vérifier l'intégrité de sources scellées par exemple.

Toujours pour éviter les risques d'expositions interne et externe

Les mesures de contamination, à quelles occasions?

- 1. Lors des vérifications internes de radioprotection Recherche de contamination surfacique, atmosphérique....
- 2. Vérification des personnes (sortie de zone) Mains/Pieds, tenu de travail...
- 1. À l'expédition et la réception des transports de colis radioactifs dans le cadre des règles TMD
- 2. Pour éliminer des déchets et des effluents

2 COMMENT RÉALISE-T-ON DES MESURES DE CONTAMINATION ?

Cela dépend de ce que l'on cherche à mesurer

- Contamination surfacique?
- Contamination atmosphérique?
- Quels radionucléides ?
- ...contamination interne?

D'abord savoir ce que l'on cherche

__

S'appuyer sur l'analyse des risques de l'installation :

- Quels radionucléides sont manipulés?
- o Dans quelle quantité?

→ Choix de la méthode de mesure

Les appareils de mesure de la contamination

Appareils pour la contamination surfacique

Les appareils de mesure de la contamination

• Appareils pour la contamination atmosphérique

Les appareils de mesure de la contamination

Appareils de laboratoire

3

LA MESURE DE CONTAMINATION SURFACIQUE EN DÉTAIL

La Fiche Technique de la SFRP

FICHES TECHNIQUES

MÉMO CONCERNANT
LA MESURE DE CONTAMINATION
RADIOACTIVE SURFACIQUE

—— MAI 2023 ——

Comprendre à partir d'un exemple

Comment une mesure de contamination surfacique se déroule ?

- Mesure directe
- Mesure indirecte

L'objectif est dans les 2 cas de déterminer la quantité d'activité radiologique présente sur une surface.

Mesure directe

Objectifs et principes :

- Permet de mesurer simultanément la contamination fixée et non fixée sur une surface.
- Offre une "image immédiate" de la contamination, utile pour localiser et faciliter la décontamination.

Mesure directe

Méthodologie:

- Utiliser une sonde adaptée à la surface.
- Respecter une faible distance entre détecteur et surface (<5 mm).
- Parcourir lentement la surface à 5 cm/s pour assurer une mesure fiable.

Mesure indirecte

Objectifs et principes :

- Permet de mesurer uniquement la contamination non fixée (labile).
- Utilisée lorsque les surfaces sont difficilement accessibles ou en cas de perturbations dues au bruit de fond.
- Normes de prélèvement : surface frottée standard de 100 cm² ou 300 cm²

Mesure indirecte

__

Méthodologie:

- Échantillonnage avec un papier filtre, un frottis ou un coton-tige.
- Appliquer une pression uniforme sur une surface prédéfinie (ex. 100 cm²).
- Stocker les frottis sans qu'ils se contaminent entre eux
- Réaliser un comptage du frottis avec l'appareil adapté aux rayonnements présents

Les appareils à utiliser

En fonction des émissions à détecter :

- Particules alpha (α).
- Particules bêta (β).
- Rayonnements électromagnétiques : gamma (Y) et X.

Atelier dédié : Un atelier pratique est organisé lors des journées pour guider les participants dans le choix des appareils en fonction des besoins opérationnels.

Les appareils à utiliser

_

Quel que soit l'appareil utilisé:

La fiabilité des résultats dépend de la rigueur dans l'application des protocoles et la méthodologie d'interprétation.

L'utilisateur doit donc établir sa méthodologie en fonction de ses besoins

4

COMMENT INTERPRETTER DES RÉSULTATS DE MESURES ?

Le résultat souvent espéré : RIEN

Le plus souvent lorsque l'on réalise des mesures de contamination surfacique en tant que PCR :

Le résultat attendu est « PAS DE CONTAMINATION »

Pas de conta : pas de problème !

Mais comment s'assurer qu'il n y a rien ?

Une valeur apparait ailleurs dans la réglementation des transports sur la propreté radiologique

TRANSPORT DE MATIÈRES RADIOACTIVES

NUCLÉAIRE DE PROXIMITÉ

Propreté radiologique des colis et véhicules :

Contamination inférieure à $4 \, \text{Bq/cm}^2$ pour les émetteurs β , γ et α de faible toxicité.

Contamination inférieure à 0,4 Bq/cm² pour les autres émetteurs α .

Colis exceptés :

Intensité de rayonnement au contact $< 5 \mu Sv/h$.

Véhicules:

Intensité de rayonnement au contact < 2 mSv/h. Intensité de rayonnement à 2 m < 0,1 mSv/h.

Mais comment s'assurer qu'il n y a rien ?

Le plus souvent, les PCR ont en tête un repère établi à deux fois le bruit de fond.

Cette indication n'a pas de valeur réglementaire pour des mesures

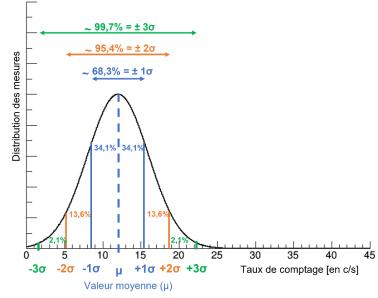
A l'issue du délai nécessaire à la décroissance radioactive des radionucléides, le titulaire d'une autorisation ou le déclarant visé à l'article 1er réalise ou fait réaliser des mesures pour estimer la radioactivité résiduelle des déchets. Le résultat de ces mesures ne doit pas dépasser une limite égale à deux fois le bruit de fond dû à la radioactivité naturelle du lieu de l'entreposage. Les mesures sont effectuées dans une zone à bas bruit de fond radioactif avec un appareil adapté aux rayonnements émis par les radionucléides.

Un autre chemin: la LD et la SD

Pour déterminer la validité des mesures nous pouvons utiliser différentes notions :

- Des seuils de décision (SD),
- Des limites de détection (LD)

Ainsi il pourra être conclu à la présence de radioactivité dans l'échantillon (frottis ou surface).

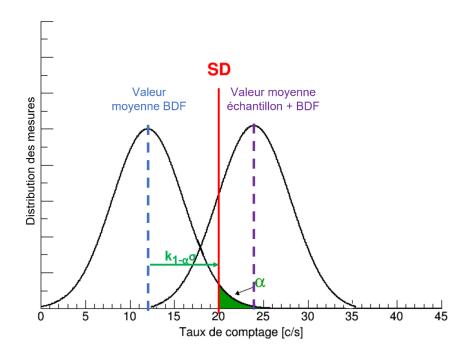

Un peu (pas trop!) de statistiques

La distribution des mesures est assimilable à une loi Normale si le nombre d'évènements mesuré est suffisamment grand.

Cette distribution est caractérisée par

- une espérance (μ) = valeur moyenne
- un écart-type (σ) = dispersion des données

Ces propriétés vont permettre de calculer le SD et la LD



Le seuil de décision (SD)

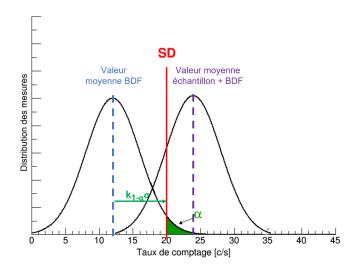
Pour une probabilité d'erreur α,

Les impulsions mesurées sontelles dues à la présence de radioactivité?

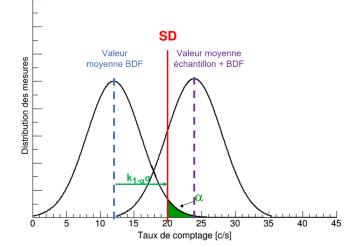
Ce seuil de décision calculé s'ajoute à la valeur moyenne du Bruit de fond.

Le seuil de décision (SD)

SD (c/s) =
$$k_{1-\alpha} / BDF \left(\frac{1}{T_{BdF}} + \frac{1}{T_{Mes}} \right)$$

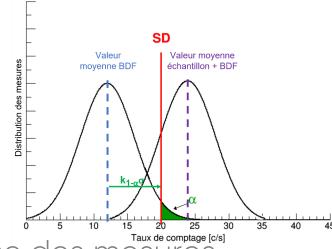


- $k_{1-\alpha}$ dépend de la probabilité d'erreur acceptée,
- BDF est le taux de comptage du bruit de fond (en chocs/s),
- T_{BdF} et T_{Mes} sont respectivement les temps de mesure du BdF et de la mesure (en secondes).


 $k1-\alpha = 1,96$ approximation à 2 pour un risque α de 2,5% (Valeur issue des tables de loi normale)

- Pour un BDF de 20 c/s sur 20s,
- si l'on réalise des mesures d'échantillon de 1s
- Le SD sera de 29,16 c/s

SD (c/s) =
$$k_{1-\alpha} \sqrt{BDF \left(\frac{1}{T_{BdF}} + \frac{1}{T_{Mes}}\right)}$$


0ù :

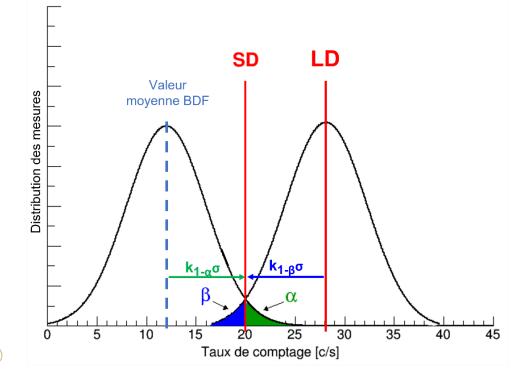
- $k_{1-\alpha}$ dépend de la probabilité d'erreur acceptée,
- BDF est le taux de comptage du bruit de fond (en chocs/s),
- T_{BdF} et T_{Mes} sont respectivement les temps de mesure du BdF et de la mesure (en secondes).

 $k1-\alpha = 1,96$ approximation à 2 pour un risque α de 2,5% (Valeur issue des tables de loi normale)

• Pour un BDF de 20 c/s sur 20s, si l'on réalise des mesures d'échantillon de 1s le SD sera de 29,16 c/s

Le seuil de décision (SD)

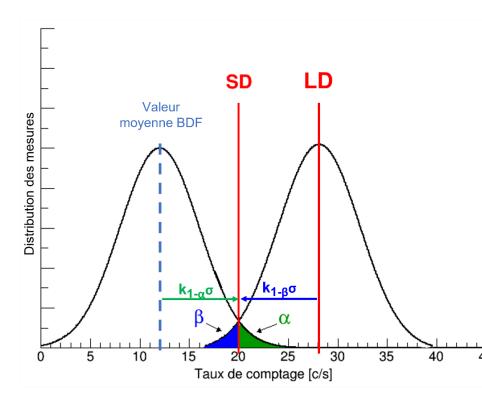
- Pour un BDF de 20 c/s sur 20s, si l'on réalise des mesures d'échantillon de 1s :
- Le SD sera de 29,16 c/s


Dans cet exemple:

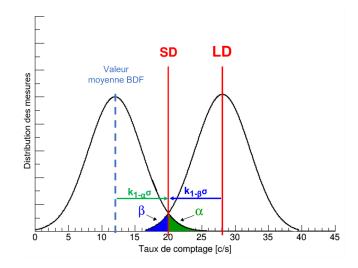
Si une mesure est en dessous de 29 c/s, le résultat obtenu n'est pas <u>attribué</u> à la présence d'une contamination avec une probabilité d'erreur de 2,5%

La limite de détection

La Limite de Détection indique la plus petite valeur vraie de mesure qui peut être détectée par la procédure de mesurage


utilisée.

La limite de détection (LD)


La Limite de Détection est la plus petite valeur **vraie** de mesure qui peut être détectée par la procédure de mesurage.

la limite de détection est définie en prenant un risque β de nondétection

La limite de détection (LD)

LD (c/s) =
$$(k_{1-\alpha} + k_{1-\beta}) \sqrt{BDF(\frac{1}{T_{BdF}} + \frac{1}{T_{Mes}})}$$

Où:

- $k_{1-\alpha}$ et $k_{1-\beta}$ dépendent des probabilités d'erreur souhaitées,
- BDF est le taux de comptage du bruit de fond (en chocs/s),
- $T_{\rm BdF}$ et $T_{\rm Mes}$ sont respectivement les temps de mesure du BdF et de la mesure (en secondes).

Cette formule se simplifie si $k_{1-\alpha} = k_{1-\beta}$ et si $T_{BdF} = T_{Mes}$.

On a notamment LD (c/s) = 2 SD (c/s) ou encore.

5

Quelle est l'activité mesurée ? Passer des c/s aux Bq/cm²

Pour les mesures directes

$$A_{net} = \frac{n - n_{BdF}}{\rho 2\pi \times \epsilon s}$$

0ù:

- n : taux de comptage mesuré en c/s.
- n_{BdF} : taux de comptage du bruit de fond en c/s.
- $\rho 2\pi$: rendement de l'instrument.
- Es : rendement de source. (Variable si alpha, bêta de faible énergie ou bêta)

$$A_{Surf}(Bq/cm^2) = \frac{A_{net}}{S_{sonde}}$$

0ù:

- A_{Surf} : activité surfacique en Bq/cm².
- S_{sonde} : surface de la sonde
- A_{net} : activité nette sur la surface de référence (après déduction du bruit de fond).

Pour les mesures indirectes

$$A_{net} = \frac{n - n_{BdF}}{\rho 2\pi \times \epsilon s}$$

$$A_{Surf}(Bq/cm^2) = \frac{A_{Sonde}}{S_{Frotee} \times F}$$

0ù:

- A_{Sonde} : activité nette sous la sonde en Bq.
- A_{surf} : valeur de la contamination de surface sur l'objet contrôlé
- $S_{\text{frottée}}$: surface frottée, exemple $S = 100 \text{ cm}^2$
- F : facteur de prélèvement

Afin de pouvoir faire ces calculs il est ABSOLUMENT nécessaire de savoir :

- Quels radionucléides ont été mesurés
- Quel est le rendement de l'appareil pour les radionucléides mesurés

Merci à ceux qui sont toujours réveillés!

Hadrien Zulian conseillers en radioprotection

www.ocrp-expertise.fr contact@ocrp-expertise.fr

$$k1-\alpha = 1,96$$

- α est le **niveau de risque** ou la probabilité d'erreur (généralement 5 % ou $\alpha=0,05$).
- $1-\alpha$ est la probabilité cumulative associée à l'intervalle symétrique centré autour de la moyenne (ici, 95 %, soit $1-\alpha=0,95$).

2. Pourquoi 1.96?

- Une loi normale standardisée (moyenne $\mu=0$, écart-type $\sigma=1$) a une fonction de répartition cumulative qui donne la probabilité d'obtenir une valeur inférieure ou égale à un certain seuil.
- Si on cherche l'intervalle à 95 % de confiance, il reste 2,5 % dans chaque extrémité de la courbe (gauche et droite).
- La valeur de Z telle que $P(Z \le k_{1-\alpha}) = 0,975$ (95 % + 2,5 %) est **1.96**.

$$k1-\alpha = 1,96$$

- α est le **niveau de risque** ou la probabilité d'erreur (généralement 5 % ou $\alpha=0,05$).
- 1-lpha est la probabilité cumulative associée à l'intervalle symétrique centré autour de la moyenne (ici, 95 %, soit 1-lpha=0,95).

2. Pourquoi 1.96?

- Une loi normale standardisée (moyenne $\mu=0$, écart-type $\sigma=1$) a une fonction de répartition cumulative qui donne la probabilité d'obtenir une valeur inférieure ou égale à un certain seuil.
- Si on cherche l'intervalle à 95 % de confiance, il reste 2,5 % dans chaque extrémité de la courbe (gauche et droite).
- La valeur de Z telle que $P(Z \le k_{1-\alpha}) = 0,975$ (95 % + 2,5 %) est **1.96**.