

RÉPUBLIQUE FRANÇAISE

CO-EXPOSURE TO LOW-DOSE GAMMA IRRADIATION WITH A CHEMICAL STRESSOR CAUSES DIFFERENTIAL OUTCOMES ON BRAIN TOXICITY PARAMETERS IN RAT

Théo Fréchard¹, Chloé Brizais¹, Véronique Ménard³, Florence Bachelot¹, Céline Gloaguen¹, Frédéric Voyer², Virginie Monceau¹, Dmitry Klokov¹, <u>Chrystelle Ibanez¹</u>

Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE, ¹Laboratoire de Radiotoxicologie et de Radiobiologie Expérimentale, ²Groupe de Support à la Recherche et à l'Ethique Animale, Fontenay-aux-Roses, ³CEA/DRF/JACOB/IRCM/GIR, Fontenay-aux-Roses

- The depletion of microglial cells in FC could contribute to the disruption of the cerebral microenvironment and thus to the increase of the neuronal suffering phenotype. The increase of the antioxidant response and HIF1α modulation might be an attempt to compensate this loss.
- The reduction of TNFa expression in OB at 28 days while microglial activation is increased suggest an on-site antiinflammatory microglial activation in response to our co-exposure.

International Radiation Protection Association Congress - 7^{th} to 12^{th} July 2024

≫IRPA 16