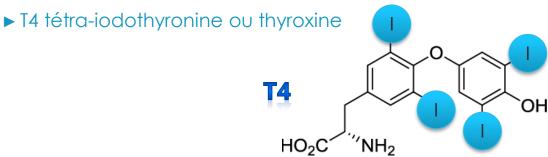
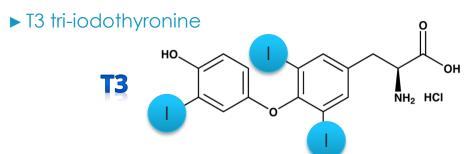
L'iode dans le diagnostic et le traitement des maladies thyroidiennes

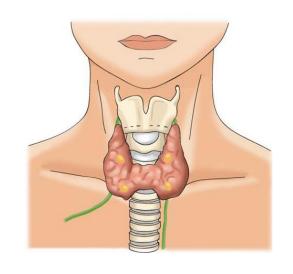
Aurélie FORBES, APHP, Cochin

Journées Techniques de la SFRP L'iode dans tous ses états 26 mars 2024

■ La glande thyroïde


▶ 2 lobes reliés par un isthme

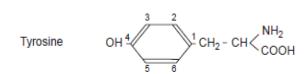

volume total: 10 à 20 ml


• poids ≈ 15 à 30 g

• Très vascularisé : débit sanguin 100 mL/min

■ Glande endocrine assurant la synthèse et la sécrétion des hormones thyroïdiennes :

Tissus thyroïdiens

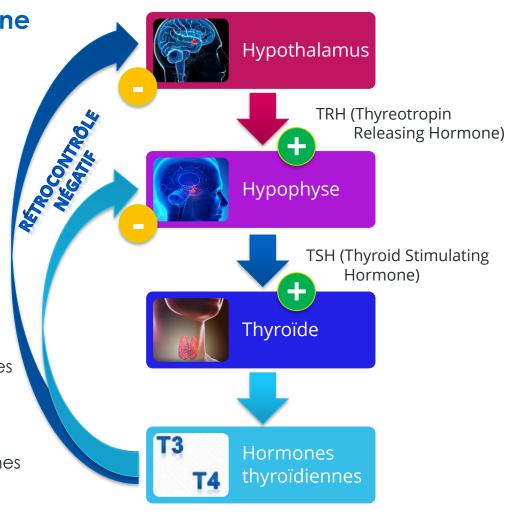

composé de follicules (200 à 300 µm), eux-mêmes constitués de :

- ► Paroi épithéliale :
- Thyréocytes
- Cellules C
- ► Colloïde:
- Thyroglobuline (90%)

Follicule thyroïdien Tissu conjonctif Capillaire sanguin Cellule C (sécrétion de la Colloïde calcitonine) (thyroglobuline) **Thyréocytes** (sécrétion des hormones thyroïdiennes)

Synthèse des hormones thyroïdiennes

- ► Incorporation de l'iode
- ► Organification de l'iode et de la thyroglobuline
- Liaisons peptidiques d'iode et de tyrosine
- Oxydation de l'iode sous l'effet de la thyropéroxydase
- Fixation à la thyroglobuline
- ▶ Libération des hormones thyroïdiennes dans le sang



contrôle de l'activité thyroïdienne

- ▶ hypothalamo-hypophysaire
- Stimulation par la TRH
- La TSH stimule la prolifération cellulaire et la capture de l'iode par la thyroglobuline
- Rétro-contrôle de la TSH par la T3

état thyroïdien

- ► Euthyroïdisme
- Fonctionnement normal
- ► Hyperthyroïdisme
- Forte production d'hormones thyroïdiennes
- TSH ≥
- ► Hypothyroïdisme
- Faible production d'hormones thyroïdiennes
- TSH ↗

Les maladies thyroïdiennes

■ L'hypothyroïdie

- ▶ Par carence en iode
- ▶ Par excès d'iode
- ▶ Congénitale
- ► Auto-immune (50% des cas)
- La plus fréquente : thyroïdite de Hashimoto
- Causes: stress, infection virale, génétique

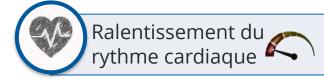
Symptômes de l'hypothyroïdie

- ► Ralentissement des fonctions
- ▶ Prise de poids, perte de cheveux
- ▶ Déprime, problème de concentration

Traitement

▶ hormones thyroïdiennes de synthèse

Hypothyroïdie


Production insuffisante d'hormones thyroïdiennes

L'hyperthyroïdie

- ► Auto-immune
 - Notamment Basedow (Graves' disease)
- ▶ Autonome
- Hyperthyroïdies nodulaires
- ► Hyperthyroïdie factice
- ► Hyperthyroïdie par surcharge iodée
- ► Thyroïdite
- ► Hyperthyroïdie centrale
- ► Hyperthyroïdie tumorale

Symptômes de l'hyperthyroïdie

- ► Fonctions en sur-régime
- ► Perte de poids
- ▶ Nervosité, Anxiété, Troubles du sommeil

Basedow

anticorps anti R-TSH (TRAK) stimulant la sécrétion thyroïdienne

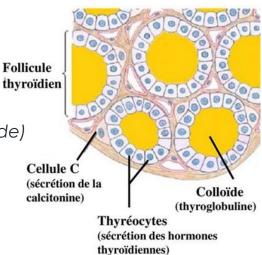
Hyperthyroïdie

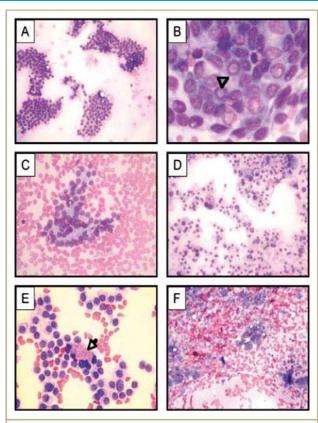
Production excessive d'hormones thyroïdiennes

Nervosité

Sueurs

Agressivité


Diarrhées



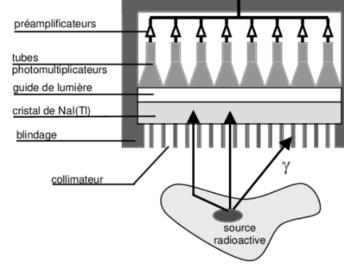
Palpitations et accélérations du rythme cardiaque

Les cancers de la thyroïde

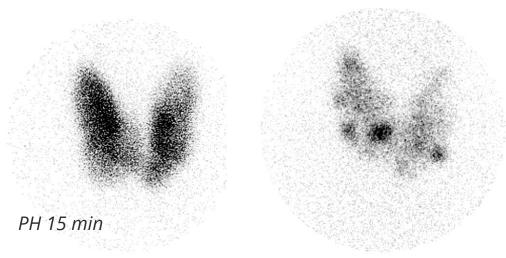
- ► Souvent asymptomatique, évolution lente
- ▶ Parfois avec nodule thyroïdien ou sur un goitre connu
- ► Taux de TSH généralement normal
- ► Cancers papillaires (60-80%)
- ► Cancers vésiculaires ou folliculaires (10-20%)
- ► Cancers anaplasiques (2%):
 - plus agressifs, touchent les thyréocytes
- ► Cancers peu différenciés
- ► Cancer médullaire (5%)
- augmentation du taux de Calcitonine (Cellules C de la thyroïde)

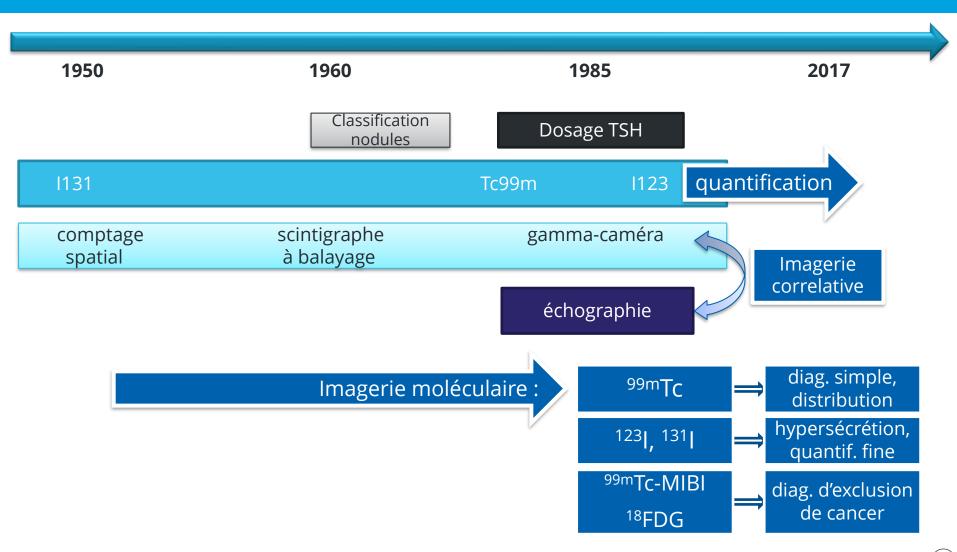
- A. Carcinome papillaire: amas à bords nets (MGG x 100).
- B. Carcinome papillaire: pseudoinclusion nucléaire (flèche) (MGG x 1000).
- C. Adénome vésiculaire: amas de cellules vésiculaires avec une architecture microvésiculaire (MGG x 200).
- D. Carcinome médullaire: cellules isolées avec des noyaux très volumineux, et présence d'une multi-nucléation (MGG x 100).
- E. Carcinome médullaire: granulations rouges cytoplasmiques (flèche) (MGG x 200).
- F. Carcinome anaplasique: cellules malignes pléomorphes avec un fond « sale » et hémorragique (MGG x 100).

lode, diagnostics et scintigraphie thyroïdienne

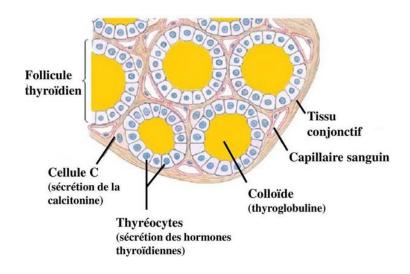

Imagerie de la thyroïde en Médecine Nucléaire : La gamma caméra

- ▶ TEMP : tomographie à émission mono-photonique
- ► SPECT: Single photon emission computed tomography
- ▶ Elle permet de réaliser les images de distribution du radiotraceur dans l'organisme du patient.
- ▶ Elle est constituée de détecteurs composés :
 - d'un collimateur
 - d'un cristal scintillateur Nal (TI)
- De photomultiplicateurs




La scintigraphie thyroïdienne

► Collimateur pin-hole: pour avoir une image bien résolue



Scintigraphie au ^{99m}Tc

- ▶ Le ^{99m}Tc rentre dans la cellule mais en ressort rapidement (pic à 20 min).
- ▶L'image en ^{99m}Tc est une simple image moléculaire du transport du Tc.

Scintigraphie à l'iode 123

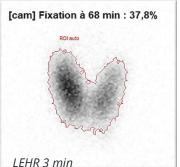
- ► L'iode 123 intègre la cellule et est progressivement transféré sur la Thyroglobuline (TG).
- ► La radioactivité attachée à la TG représente plus de 80 % du signal lorsque l'on fait une scintigraphie thyroïdienne à plus de 90 minutes post IV
- ►L'image à l'iode 123 est une image moléculaire mixte
 - Du transport à temps précoce
 - De l'organification à temps tardif

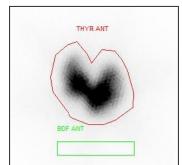
Scintigraphie et quantification

Quantification : mesure du taux de fixation de l'iode

 $Taux\ de\ fixation\ = 100* \frac{N(thyro\"{i}de) - N(BDF)}{N(d'activit\'{e}\ inject\'{e}e)}$

Avec N: nombre de coups; BDF: bruit de fond


Mesure seringue + étalonnage


► Facteur de calibration, sensibilité :

$$S \equiv \frac{\text{Nombre d'évènements détectés}}{\text{Activité } (MBq) \text{ x temps d'acquisition } (s)}$$

- ► Compteur thyroïdien
- ► Gamma-caméra en collimateur parallèle
- avec une méthode de contourage propre à chaque centre

Scintigraphie thyroïdienne à l'iode 123 avec quantification

- ▶ Patient : Suspicion d'un nodule autonome basilobaire droit au stade compensé
- TSH en diminution depuis 2016
- Échographie : volume de la thyroïde : 9 mL

► Scintigraphie:

- hypercontraste l'amas nodulaire lobaire droit
- hypocontraste du parenchyme d'extinction partielle

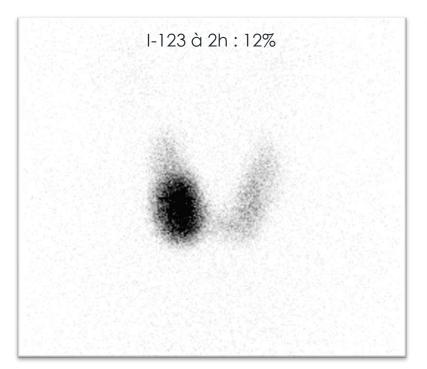
► Fixation à 2 heures à la sonde :

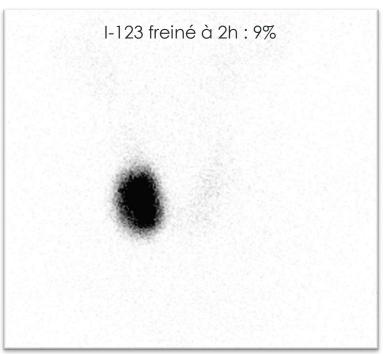
12 %, valeur inadaptée à la TSH à 0.57 mUI/L

► Conclusion:

 Amas nodulaire lobaire droit autonome, au stade compensé

► Traitement:


• possible par iode 131



I-123 à 2h : 12%

Scintigraphie à l'iode 123 après freinage court par cynomel (T3)

- ► Scintigraphie freinée à l'iode 123 après 5 j de cynomel à 25µg/j
- confirme le diagnostic d'autonomisation focale et diffuse
- ► Fixation à 2 heures à la sonde :
- 9 % (contre 12% avant freinage)
- valeur restant inadaptée à la TSH bien freinée à 0.091 mUI/L

Traitement de la thyroïde à l'iode 131

► Recommandations EANM (personnalisation)

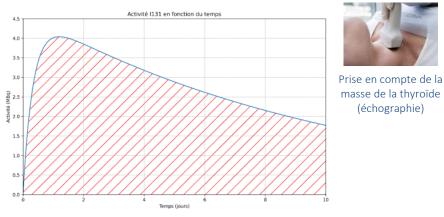
Eur J Nucl Med Mol Imaging DOI 10.1007/s00259-013-2387-x

GUIDELINES

EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases

Heribert Hänscheid • Cristina Canzi • Wolfgang Eschner • Glenn Flux • Markus Luster • Lidia Strigari • Michael Lassmann

European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:3324–3348 https://doi.org/10.1007/s00259-023-06274-5


GUIDELINES

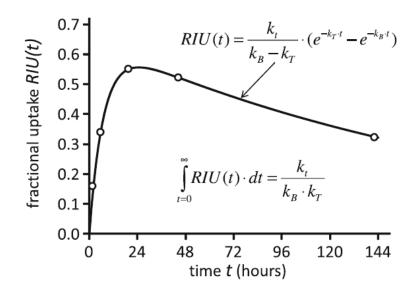
The EANM guideline on radioiodine therapy of benign thyroid disease

Alfredo Campenni¹ · Anca M. Avram² · Frederik A. Verburg³ (i) · Ioannis Iakovou^{4,5} · Heribert Hänscheid⁶ · Bart de Keizer⁷ · Petra Petranović Ovčariček^{8,9} · Luca Giovanella^{10,11}

Pathologie	Dose Absorbée Recommandée (Gy)
Maladie de Basedow (ablation)	200-300
Maladie de Basedow (Euthyroïdisme)	100-150
Goitre Multi-Nodulaire toxique	150-300
Goitre Nodulaire toxique	300-400

■ L'I-131 : traitement de référence des maladies bégnines de la thyroïde

▶ Utiliser une activité traceuse pour déterminer le taux de fixation du patient en iode 131


$$RIU_{131I}(t) = \frac{A_{thyro\"{i}de}(t)}{A_{administr\'{e}e}} \longrightarrow A_{therapeutique}[MBq]\alpha \frac{M[g].D[Gy]}{\int_0^\infty RIU(t)dt}$$

- ▶ 3 temps de mesures
- Contraignant pour le patient
- ► La mesure de **fixation** requiert une quantification **précise**

Scintigraphie thyroïdienne Gamma-caméra

Adapter la méthode à un autre isotope de l'iode

- ▶ Administrer assez d'activité pour une mesure tardive détectable
- ► Corriger la période physique pour transformer le RIU en équivalent de l'131-l

Formules simplifiées

► dérivées de : <u>Marinelli, Dosage determination in the use of radioactive isotopes</u> Clin Invest. 1949;28(6):1271-1280. https://doi.org/10.1172/JCI102194

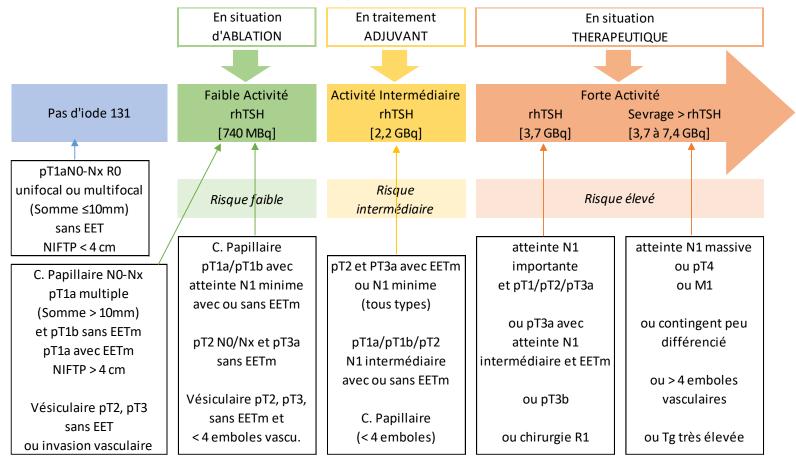
$$A(MBq) = \frac{24.7 \times D(Gy) \times m(g)}{F_{24}(I131)(\%) * T_{eff}(jours)}$$

⇒ période effective « standard » pour tous les patients : ≈ 5,8 jours (maladies de Basedow)

Choix de l'isotope

Scintigraphie Thyroïdienne	Intérêt en Diagnostic	Intérêt en Thérapie
au Tc99m	+	-
à l'Iode 123	++ (>Tc99m lorsque le TSH n'est pas complétement freinée)	+ (dosimétrie en cas d'autonomisation)
à l'Iode 131	-	+ (dosimétrie en cas de Maladie de Basedow)

[ref] J. Clerc, Quantitated thyroid scan (123I) of the thyroid nodule: a new molecular imaging, J Radiol 2009;90:371-91, doi: 10.1016/s0221-0363(09)72524-7


Classification des cancers thyroïdiens

▶ classification pTNM (8ème édition 2017)

T	T1a	T ≤ 1 cm (avec ou sans extension microscopique extra thyroïdienne)	
	T1b	T > 1 cm et ≤ 2 cm (avec ou sans extension microscopique extra thyroïdienne)	
	T2	T > 2 cm et ≤ 4 cm (avec ou sans extension microscopique extra thyroïdienne)	
	Т3	T > 4 cm : T3a avec ou sans extension microscopique extra thyroïdienne) ou T3b avec extension macroscopique aux muscles péri-thyroïdiens. (muscles sternohyoïdien, sternothyroïdien, thyrohyoïdien ou omohyoïdien)	
	T4a	Quelle que soit la taille tumorale, tumeur avec extension extrathyroïdienne et invasion des tissus sous cutanées, ou du larynx, ou de la trachée, ou de l'œsophage ou du nerf récurrent	
	T4b	Quelle que soit la taille tumorale, tumeur avec extension extra thyroïdienne et invasion du fascia pré-vertébral, de la carotide ou des vaisseaux médiastinaux	
N	N0	Pas d'envahissement ganglionnaire	
	Nx	Statut ganglionnaire inconnu (pas de curage)	
	N1a	Envahissement ganglionnaire du secteur VI (secteurs prétrachéal ou recurrentiels) ou VII (médiastinal supérieur)	
	N1b	Envahissement ganglionnaire latéro-cervical (I, II, III, IV ou V) ou retropharyngé	
M	M0	Pas de métastase à distance	
	M1	Métastase à distance	

Détermination de l'activité dans le traitement du cancer thyroïdien

▶ Réunion de concertation pluridisciplinaire

Nombreuses hyperthyroïdies

- ► Maladies auto-immunes (Basedow)
- ► Autonomies (nodules)
- ► Surcharges iodée
- ► Thyroïdites, etc ...

■ La scintigraphie thyroïdienne à l'iode

- ▶ À corréler au taux de TSH
- ► À corréler à l'échographie
- ▶ Quantification

Précision de la quantification

- ► Nécessite un étalonnage précis
- ▶ Groupe de travail SFPM / IRSN : Précision de la mesure de la fixation thyroïdienne
- Comparer les protocoles de quantification des services de médecine nucléaire français
- Proposer des recommandations pour la détermination du facteur d'étalonnage
- Caractériser les paramètres influant sur la quantification

Traitement des hyperthyroïdies par iode 131

▶ Objectifs de dose identiques par type de maladie

Pathologie	Dose Absorbée Recommandée (Gy)
Maladie de Basedow (ablation)	200-300
Maladie de Basedow (Euthyroïdisme)	100-150
Goitre Multi-Nodulaire toxique	150-300
Goitre Nodulaire toxique	300-400

- ► Ciblage: modulation pharmacologique
- ▶ Détermination des paramètres nécessaires au calcul de l'activité à administrer
 - Échographie (masse)
 - Quantification (fixation à 24h, période effective)
- Aller vers plus de personnalisation de l'activité thérapeutique
 - ▶ Plusieurs temps de mesure
 - ▶ Quantification à l'iode 131 ...

