

Automatisation des contrôles radiologiques de contamination de voirie et en limite de ZppDN

Congrès National de la SFRP 15/06/2023

B. KERNISANT (SOCOTEC) & A. GODOT (INNOW ROBOTICS) & M. KARST (EDF - UNIE) & A. SPONEM (EDF - CNPE BUGEY)

1. RAPPEL DES EXIGENCES

Vérification des zones attenantes aux ZS/ZC à risque de contamination : toutes les 10 semaines +/- 1 semaine

Vérification des voies de circulation utilisées pendant l'Arrêt de Tranche et des trottoirs devant les SAS de sortie de ZppDN

Vérification des zones attenantes aux SAS de sortie de ZppDN et des voiries suite au transfert d'un matériel hors gabarit (TN12,...)

Vérification annuelle des voiries du CNPE susceptible de voir circuler du matériel contaminé

Le système doit permettre de détecter la présence d'une source ponctuelle de 800 Bq équivalent cobalt 60 en surface

2. APPAREILS ACTUELS

Basé sur enquête interne propreté radiologique (C. Dabat Blondeau / M. Lestang)

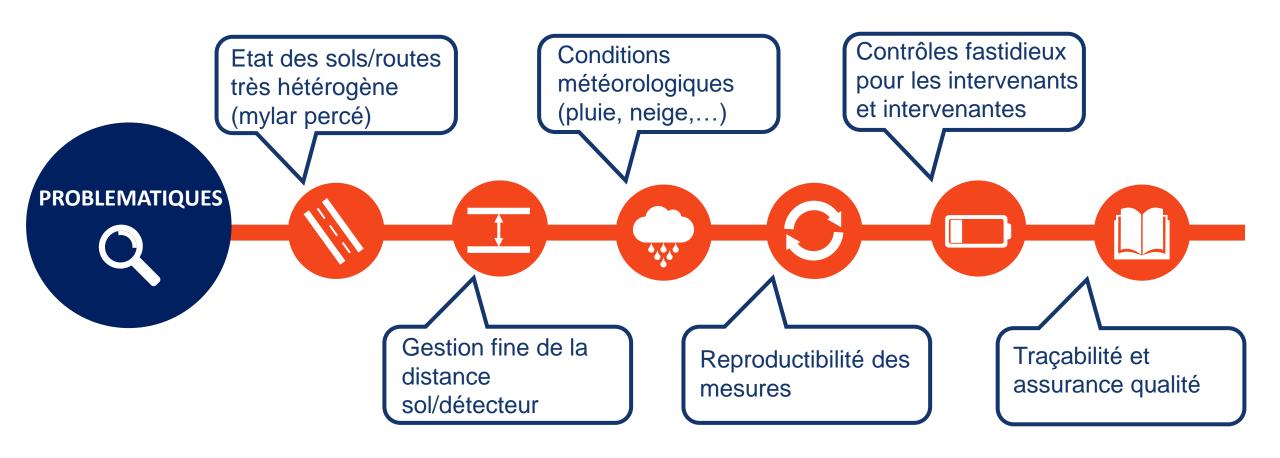
Appareils - Détection bêta	Hauteur cm	Vitesse max. cm/s	Surfa ce sensi ble cm²	LD en mode dépistage (Bq eq ⁶⁰ Co)	BDF max µSv/h	VOIRIES 800 Bq(*)
COMO 170	Quasi contact	5	170	70 Bq	0,1	Pour des mesures ponctuelles
COMO 300	Quasi contact	6	300	97,5 Bq	0,15	Pour des mesures ponctuelles
FLM3D	3 cm sur roulettes	10	600	225 Bq	0,1	Possible (Petites surfaces)
Quick Sweep	Quasi Contact 5 cm	10 10	970 970	255 Bq 475 Bq	0,1	Possible (Petites surfaces)

(*) Détection avec un niveau de confiance de 97,5% et PFA = 2,5% Ces données dépendent des conditions d'utilisation du matériel, elles ont été estimées dans les meilleures conditions de réalisation

2. APPAREILS ACTUELS

Basé sur enquête interne propreté radiologique (C. Dabat Blondeau / M. Lestang)

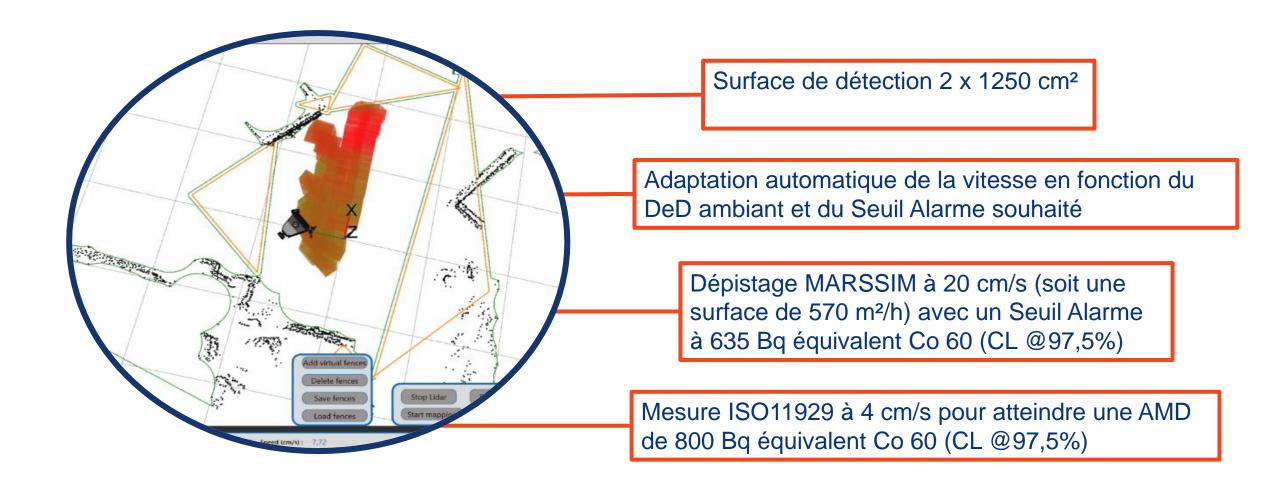
Appareils	Hauteur Opérati onnelle cm	Vitesse cm/s	Surfa ce cm²	LD en mode dépistage (0,1 µSv/h)	BDF max µSv/h	VOIRIES 800 Bq(*)
CS 28N	3 (ou 5)	54	1875	610 Bq	0,13	Oui (par temps adapté)
CST 28	5	54	1875	710 Bq	0,1	Oui (par temps adapté)
CW28N	4,6 1,2	54	1283	380 Bq 200 Bq	Env. 1	Oui (par temps adapté)
CRTT		Pas de (Oui (par tout temps)			


(*) Détection avec un niveau de confiance de 97,5% et PFA = 2,5% Ces données dépendent des conditions d'utilisation du matériel, elles ont été estimées dans les meilleures conditions de réalisation

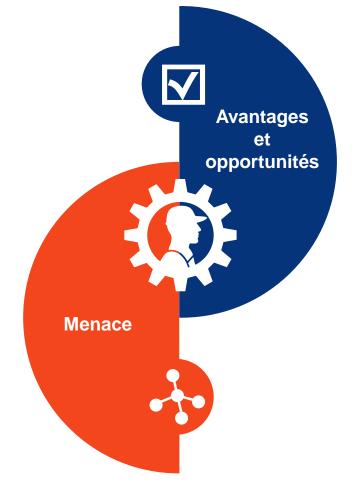
3. PROBLEMATIQUES RENCONTREES



4. SOLUTION PROPOSEE


- Porteur IP67 pilotage manuel, semi-autonome ou autonome (LIDAR + GPS)
- 2 détecteurs NaI(TI) capables de réaliser une spectrométrie gamma sur place
- Dépistage via méthodologie MARSSIM puis passage en mode ISO11929 si alarme

4. SOLUTION PROPOSEE



4. SOLUTION PROPOSEE

Intégration sur un site industriel

 Cadrage des interactions avec les autres véhicules et les chantiers sur un site industriel

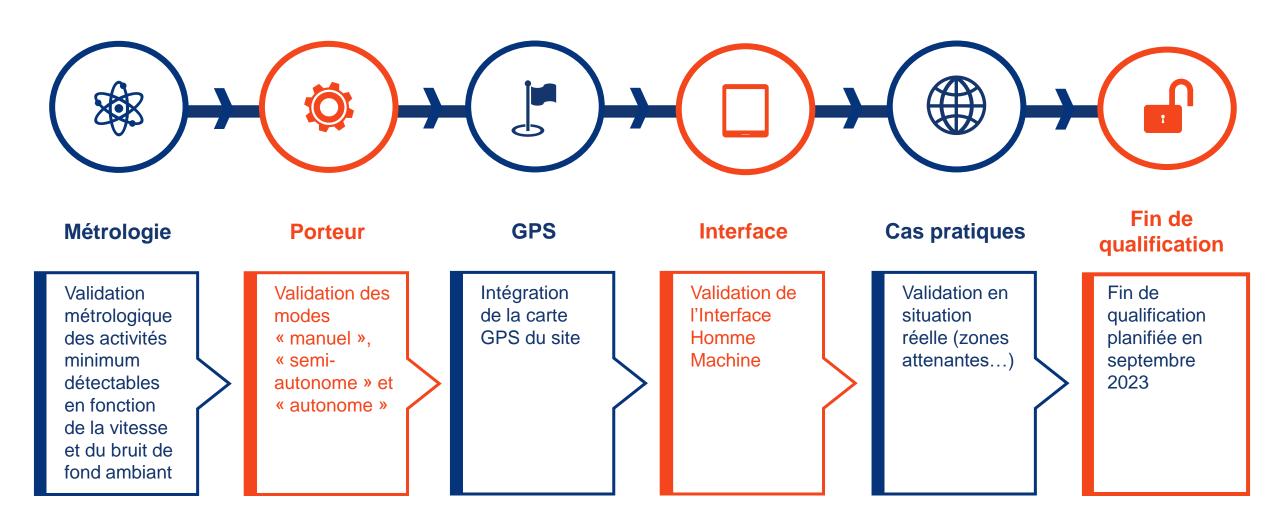
Mode automatique

- Diminution de la charge pour les techniciens et techniciennes
- Amélioration de la traçabilité
- Amélioration de la qualité

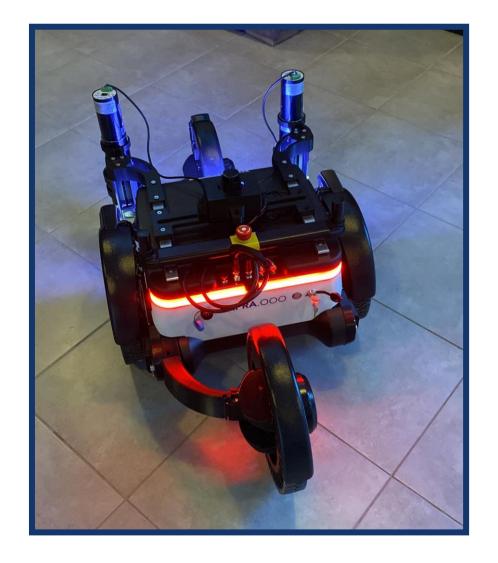
Adaptabilité

- Résistance aux conditions extérieures (sol, pluie, vent,...)
- Contrôle réalisable avec sol mouillé

Possibilité de mutualiser les besoins


- Mesure DeD gamma dans certaines zones
- Utilisation dans le cadre de situations de crise (mesure DeD, spectrométrie,...)
- Plateforme polyvalente (logistique, capteurs différents,...)

5. PROTOCOLE DE TEST



6. CONCLUSION

Un appareil adapaté aux besoins du terrain

Partenariat réussi entre SOCOTEC – INNOW Robotics - EDF

Fin des qualifications fin septembre 2023

