$Sim\beta$ -AD - Couplage codes de calculs et mesures actives pour une meilleure détermination de l'activation des cyclotrons

Jean-Michel HORODYNSKI -Frédéric CHAPELLE - Hugues MONARD (iRSD) - Nicolas ARBOR - Stéphane Higueret - Daniel HUSSON - The-Duc Lê (IPHC) - Cédric DOSSAT - Nicolas DRAY (TRAD) - Frédéric STICHELBAULT (IBA) 09/03/2023

Journées francophones des codes de calculs en radioprotection, radiophysique et dosimétrie ...et l'apport de l'ntelligence artificielle - 2023 - Fontenay-aux-Roses

Les cyclotrons - outils indispensables pour la médecine et la recherche

- Utilisées pour de multiples applications :
 - Production de radionucléides à des fins médicales et de recherche
 - Études des matériaux sous irradiations
 - Thérapie des cancers : protonthérapie, hadronthérapie, FLASH...
- Leur exploitation entraîne l'activation des matériaux et structures environnantes (par réactions nucléaires avec les neutrons principalement)

Figure 1: CYCERON (Caen) - CYCLONE 18/9 - IBA

Problématiques

La prise en charge des déchets radioactifs produits lors de l'exploitation et le démantèlement des installations de cyclotrons demande d'importantes ressources :

- Gestion de l'entreposage (locaux nécessaires, mises en sécurité...)
- Caractérisation radiologique (contrôles destructifs/non destructifs)
- Rédaction des documents/dossiers
- Coût de la prise en charge

$Sim\beta$ -AD : Méthodologie industrielle de caractérisation des déchets activés par l'exploitation des cyclotrons

 $\begin{array}{c} {\sf Fiabilit\'e} \\ {\sf (Simulations} \ + \\ {\sf D\'etections)} \end{array}$

Impact minimal sur l'exploitation

Optimisation de la production de déchets radioactifs

Facilité de mise en œuvre

Consortium Sim*β*-**AD**

Le CNRS s'associe à deux entreprises, IBA et TRAD, afin d'associer les expertises et expériences de chacun dans le but de valoriser les travaux de recherche menés

Consortium $Sim\beta$ -AD - TRAD

- Développe le logiciel RayXpert
- Collaborations pour la modélisation numérique des cyclotrons du projet
- Collaborations dans le cadre de l'intercomparaison (module activation module protons)
- Développement d'un module dédié à la méthode $Sim\beta$ -AD, avec couplage simulations numériques/détecteurs actifs, pour la détermination des facteurs de corrélations $R_{\frac{\beta}{\gamma}}$ pour les cyclotrons

Consortium $Sim\beta$ -AD - IBA

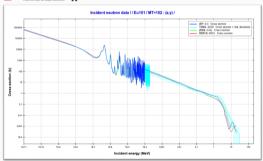
- Construteurs de cyclotrons
- Collaborations pour la modélisation numérique des cyclotrons de leur marque
- Étude pour l'intégration des capteurs actifs de neutrons au niveau de leur machine pour réaliser des opérations de surveillance des performances (variation des champs neutroniques hors de la machine)

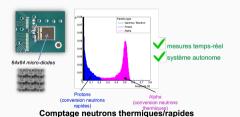
Couplages codes de calculs et détection active de neutrons

- La caractérisation des champs neutroniques produits lors du fonctionnement des accélérateurs de particules est essentiel à la détermination des niveaux d'activation dans les matériaux.
- Plus particulièrement, les cyclotrons accélérant des faisceaux d'ions produisent majoritairement des neutrons qui sont responsables de l'activation : captures neutroniques (n,γ) , réactions nucléaires (n,xp), $(n,x\alpha)$. . .
- L'utilisation de systèmes de détections neutrons *in-situ* lors du fonctionnement des cyclotrons permettra de consolider les résultats issus de simulations numériques. La détermination des facteurs de corrélation $R_{\frac{\beta}{\gamma}}$ est alors plus précise.

Conception et mise en œuvre de la méthode Sim\beta-AD

- Mise en œuvre de la méthode Simβ-AD dans plusieurs installations de cyclotrons
 - Différents types de finalités, de faisceau primaire et de temps d'utilisation
 - Simulations numériques + Caractérisations des champs neutroniques par mesures actives et passives
 - Caractérisations radiologiques (spectrométrie $\gamma + \beta$) de déchets existants
- Analyse comparative de codes de calculs et de bibliothèques de sections efficaces
- Détermination de facteurs de corrélation. R_{β}




Détections des neutrons

- L'IPHC développe des systèmes innovants de mesure neutrons basés sur la technologie CMOS
- Premiers prototypes testés auprès auprès de différentes installations (LINAC, cyclotrons...)

(CMOS)

mesures temps-réel compacité (10x7x10 cm³)

Spectrométrie neutron (télescope à protons de recul)

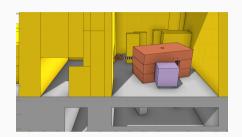
Détections de neutrons

- L'IPHC développe des systèmes innovants de mesure neutrons basés sur la technologie CMOS
- Premiers prototypes testés auprès auprès de différentes installations (LINAC, cyclotrons...)
- Spectrométre neutron compact temps-réel
 - \Rightarrow Caractérisation rapide des champs de neutrons rapides en différentes positions avec information spectrométrique
- Compteurs miniaturisés neutrons thermiques/rapides
 - \Rightarrow Réseau de capteurs pour un maillage 3D régulier des distributions de neutrons thermiques et rapides

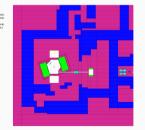
Installations engagées dans le projet

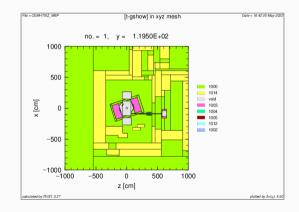
Plusieurs installations exploitant des cyclotrons fourniront du temps faisceau pour le projet $Sim\beta$ -AD

raisceau pour le projet Simp-AD				
Installations	Faisceau	\mathbf{E}_{max}	$I_{max}(\mu A)$	Cibles
		(MeV)		
CYRCé	р	25	300	L/S
CYCERON	p/d	18/9	80-50	L/G/S
CEMHTI	p/d/lpha	38/25/50	40/40/15	Irradiation
ARRONAX	p/d/lpha	70/30/68	750/80/35	L/S
CPO	р	235	600.10^{-3}	Protonthérapie
CAL	р	65/235		Protonthérapie

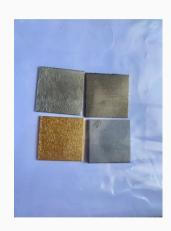


Premiers travaux - Modélisation numérique - CEMHTI

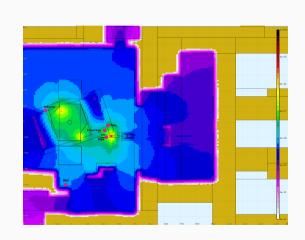




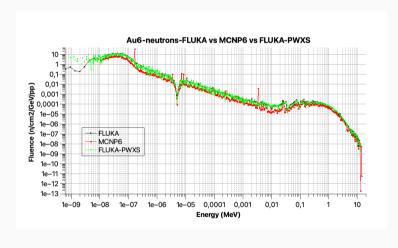
ds/my/32 16:13:15 CRMMT1 Paramet product = 00/28/82 16:12:81 hasia: EX (0.001005, 0.000000, 1.00010) (1.001005, 0.000000, 0.00010) (1.001005, 0.000000, 0.00010) (1.001005, 0.000000, 0.00010) (1.001005, 0.000000, 0.000000) (1.001005, 0.000000, 0.000100) (1.001005, 0.000000, 0.000000) (1.001005, 0.000000, 0.000000)


Premiers résultats

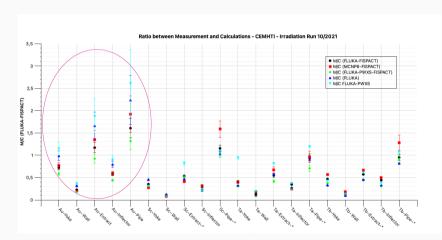
- Des expériences d'irradiation de détecteurs d'activation ont été réalisées pour les deux installations (CEMHTI-CYRCé)
- Quatre matériaux mis en œuvre : Au, Sc, Ta, Tb
- Faisceaux de protons et de deutérons pour CEMHTI, faisceaux de protons et production de ¹⁸F pour CYRCé
- \bullet Spectrométries γ réalisées par l'iRSD et l'IPHC.


Premiers résultats - CEMHTI, faisceau protons 16 MeV-25 μ A

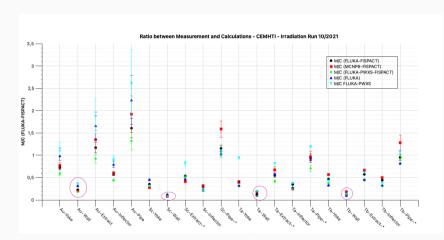
- 5 matrices de 4 détecteurs d'activations disposées autour du cyclotron (différentes fluences de neutrons)
- Première irradiation : 3 matrices de 3 matériaux seulement
- Deuxième irradiation : 5 matrices, 4 matériaux. Les détecteurs de la première irradiation ont été réutilisés pour tester leur recyclage (réduction de la consommation de matière première).
- Faisceau extrait du cyclotron entièrement perdu sur un arrêtoir (G01).
- Trois points de pertes considérés : G01, inflecteur et extraction (0,5:0,25:0,25)


Comparaison mesures-calculs

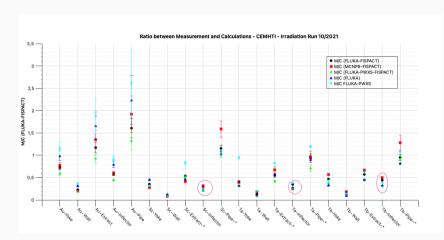
- Codes MC utilisés :
 FLUKA,
 FLUKA-PWXS
 (JEFF-3.3) MCNP6
 (TENDL19) (PHITS en cours)
- FLUKA : calcul direct de l'activation + utilisation de PWXS
- Fluences utilisés dans FISPACT-II pour le calcul d'activation (TENDL21)



Comparaison mesures-calculs


Quelques disparités importantes dans l'estimation de l'activité de ¹⁹⁸Au par les différents codes. Lors de l'utilisation de FISPACT-II, ses disparités se réduisent.

Comparaison mesures-calculs


Ratio inférieur à 0,5 pour les échantillons Murs : modèle à améliorer par la prise en compte de protections radiologiques autour de G01 (intégration en cours).

Comparaison mesure-calcul

Surestimation de l'activation au niveau de l'inflecteur : le pourcentage de perte au niveau de cet élément est inconnu : nécessité de le corriger.

Conclusions des premiers résultats

- L'utilisation des capteurs passifs et actifs permettra de détecter les faiblesses au niveau de la modélisation et ainsi d'identifier les éléments-clefs.
- Pour une modélisation à fortes incertitudes (ici, la distribution des pertes), les informations qui seront obtenus permettront également de corriger les modèles.
- Les incertitudes systématiques doivent également être identifiées ⇒ phase importante d'intercomparaison.