

ECOTOXICOLOGIE DE L'URANIUM DANS UN CONTEXTE DE CONTAMINATION MULTIPLE DES MILIEUX AQUATIQUES

Rodolphe GILBIN
Laureline FEVRIER, Olivier SIMON, Karine BEAUGELIN-SEILLER, Olivier ARMANT

rodolphe.gilbin@irsn.fr IRSN/ PSE-ENV/SRTE Cadarache BP-3, Bat-159 F-13115 Saint-Paul-Lez-Durance

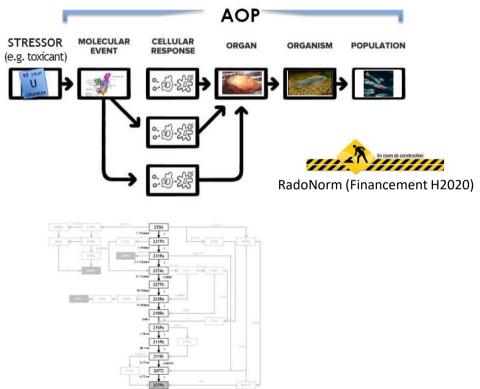
Présence d'uranium dans l'environnement

[L'U EST PRÉSENT DANS LES PRINCIPALES COMPOSANTES DES ÉCOSYSTÈMES

- origine naturelle dans les formations géologiques sous-jacentes
- remobilisation par les activité humaines dans les eaux de surface et les sédiments
 - exploitation du minerai d'U
 - cycle du combustible
- autres activités industrielles (ex. industrie des engrais phosphatés et leur utilisation)

Fiche radionucléide **Uranium naturel et environnement**

Effets adverses de l'U sur les organismes vivants

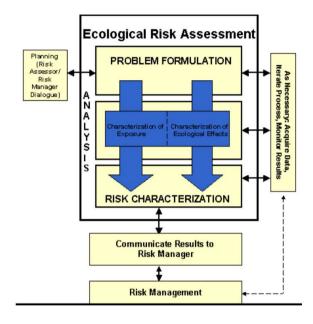

INITIÉS PAR DIFFÉRENTS ÉVÈNEMENTS MOLÉCULAIRES

Principalement liés aux propriétés chimiques de l'U

- Formation d'espèces réactives de l'oxygène (dommages mitochondriaux, stress oxydatif)
- Propriétés mimétiques moléculaires (affinité pour les sites riches en phosphates, carbonyles : protéines, ADN, ATP...)

Toxicité radiologique

- pour des formes d'U enrichi en isotope 235 (Mathews et al. 2009)
- du fait de la contribution des descendants dans la chaîne de l'U235 et U238 à la dose radiologique (Beaugelin et al., 2016)

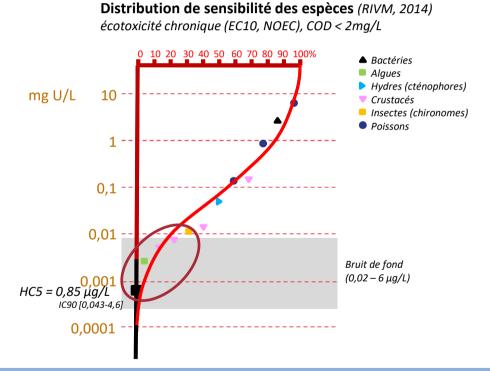

Utilisation des connaissances en écotoxicologie pour l'évaluation du risque écologique


MÉTHODES DÉRIVÉES DE L'APPROCHE DE L'US EPA (1998)

Normes de Qualité Environnementale (NQE) définies dans le contexte réglementaire de la Directive Cadre sur l'Eau (DCE 2000/60/EC)

5 cibles de protection

- communautés pélagiques (eaux douces)
- communautés benthiques (sédiments)
- prédateurs (biote empoisonnement secondaire)
- santé humaine (eau de boisson réglementation existante)
- santé humaine (ingestion des produits issus de la pêche)
- une NQE globale retient la plus faible des normes de qualité « spécifiques » déterminée pour chaque compartiment (Ineris, 2011)



Ecotoxicité chronique de l'U pour les espèces d'eau douce

CONNAISSANCES ESSENTIELLEMENT SUR TROIS TAXONS (ALGUES, CRUSTACÉS ET POISSONS)

- Environ 50 données d'écotoxicité chronique (RIVM, 2014) Quelques rares données sur amphibiens, mollusques et cnidaires
- Sensibilité des organismes vivants très variable à l'U, de l'ordre du μg/L à plusieurs dizaines de mg/L selon les organismes aquatiques considérés
- Fortes variabilités même pour une même espèce (ex. poissons f(dureté), présence de COD) = changement de biodisponibilité
- Permet de sélectionner des valeurs critiques conservatives (NOECs, HC5)

Ecotoxicité de l'U pour les autres cibles (communautés benthiques, prédateurs)

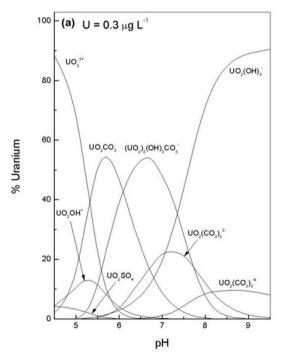
CONNAISSANCES TRÈS RÉDUITES


- Communautés benthiques (sédiments)
 - rareté des données disponibles (pas de données chronique)
 - Bioessais normalisés réalisés pour 3 espèces benthiques (Simon et al., 2022)
 - Plus faible NOEC (taux de survie *H. azteca*) 40 mgU kg⁻¹
 - → équivalent de 0,4 µg/L dans l'eau (très proche de la PNECeau générique)
- Empoisonnement secondaire des prédateurs
 - rareté des études (7 sur la période 1949-2013)
 - nombre de taxons testés faible (3 mammifères –souris, rat, chien- choix imposé par la destination sanitaire première des données), seule la moitié concerne la toxicité chronique
 - Faible puissance statistique des résultats
 - → besoin d'études de toxicité chronique animale en conditions contrôlées moins incertaines

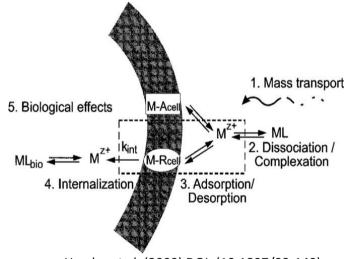
Forte variabilité des NQE déterminées en Europe

DIFFÉRENTS CHOIX MÉTHODOLOGIQUES ET INCERTITUDES DE CONNAISSANCE SUR L'ÉCOTOXICITÉ DE L'U POUR CERTAINS COMPARTIMENTS

Pays	Compartiment cible	Donnée d'(éco)toxicité critique retenue	Fact. sécurité	NQE U (μg/L)
Danmark (2011)	Santé humaine (ingestion)	0.05 mg U/kg/j (LOAEL lapin - Gilman et al., 1998)	10 x 3 x 3	0,015
Suède (2014)	eaux douces	0,7 μg/L (EC10 <i>Chlorella</i> – Charles et al., 2002)	10	0,07
Pays Bas (2014)	eaux douces	0,85 μg/L (HC5, SSD)	5	0,17
France (VGE Ineris, 2010)	eaux douces	3,2 μg/L (NOEC <i>Ceriodaphnia</i> – Pickett et al., 1993)	10	0,3
Belgique (2010)	eaux douces	10 μg/L (NOEC <i>Moinodaphnia</i> – Hyne et al., 1993)	10	1



Vorkamp et Sanderson (2016) http://dce2.au.dk/pub/SR198.pdf

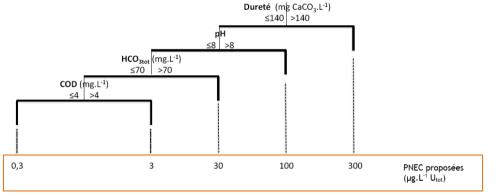

+ 2 valeurs non sourcées : Bulgarie (5 μg/L) et Rép. Tchèque (24 μg/L)

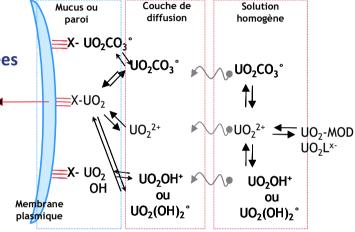
Prise en compte de la biodisponibilité

[RECOMMANDÉ POUR LES MÉTAUX DANS LE CADRE DE LA DCE (CF. INERIS, 2012)

- Spéciation chimique complexe de l'U : rôle du pH et de nombreux ligands (en rivière > 90 % de l'U associé à des complexes dissous (inorganiques ou organiques) et à la fraction colloïdale (colloïdes de fer, matière organique naturelle)
- Ecotoxicité de l'U variable selon les conditions physico-chimiques des eaux (pH, cations compétiteurs (Ca, Mg), complexation par la matière organique naturelle)
- Espèce chimique 'libre' classiquement considérée comme indicatrice de la biodisponibité pour les organismes aquatiques (modèle de l'activité de l'ion libre) : ion uranyle UO2[2+]

Hassler et al. (2009) DOI: (10.1897/03-149)


Biodisponibilité et spéciation chimique de l'U


DES LIENS COMPLEXES

Les données publiées remettant en question le postulat du modèle d'activité des ions libres

= fortes présomption de biodisponibilité de formes complexées (hydroxylées, carbonatées)

La considération des espèces biodisponibles a permis de déterminer des domaines physico-chimiques délimitant des classes de PNEC conditionnelles (à consolider)

IRSN (2014)
domaine d'application (BDD FOREGS)

- 6,4 ≤ pH ≤ 8,8
- 8.8 ≤ HCO3tot ≤ 420,6 mg.L⁻¹
- 11,4 ≤ Dureté ≤ 1090,6 mg CaCO3.L⁻¹
- 0,3 ≤ COD ≤ 23,4 mg $C.L^{-1}$

Approche TRIADE en écotoxicologie

INTÉRÊTS ET LIMITES DE L'APPROCHE « SUBSTANCE »

approche « substance »

- cadre méthodologique clair (ex. DCE, TGD)
- utilisation des informations disponibles
- utile pour caractériser des impacts a priori et existants (calcul d'un ratio de risque, incrément du bruit de fond)
- pas d'indication sur l'état de santé des écosystèmes dans des conditions réalistes
- apport des deux autres « piliers » de l'évaluation du risque écologique
 - approche « matrice » : tests d'écotoxicité sur des matrices environnementales
 - approche « écologique » : caractérisation de l'état de l'écosystème sur le terrain

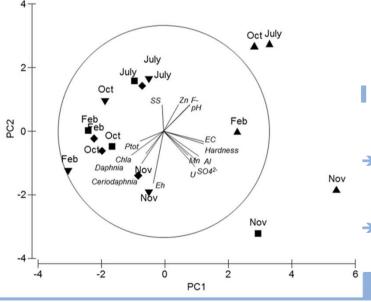
3 approches possibles

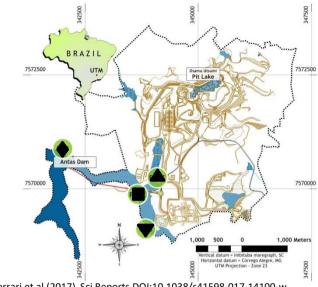
(Ineris, 2022)

Approche substance

Évalue le risque lié à la toxicité des substances. Approche matrice

Évalue le risque lié à la toxicité de la matrice.


Approche écologique

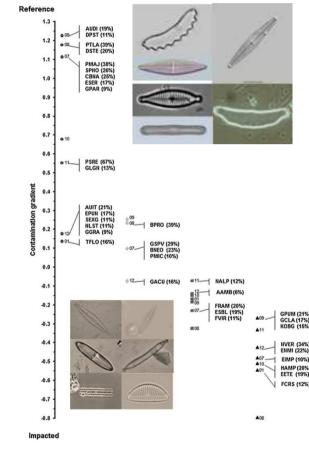

Évalue le risque en fonction des observations in situ.

Approche « matrice »

BASSIN DE L'ANTAS (UTM, MINAS GERAIS, BRÉSIL)

- Analyses chimiques et tests écotoxicologiques (bioessais aigus, Ceriodaphnia silvestrii et Daphnia magna)
- Dépassement des valeurs limites (approche chimique) pour l'U et d'autres contaminants (F, SO4, Mn, Al)

Ferrari et al (2017), Sci Reports DOI:10.1038/s41598-017-14100-w


- Corrélation entre l'écotoxicité et l'uranium, mais aussi les métaux (Mn, Al, F), conductivité, pH
- utilité pour évaluer les zones critiques au sein des écosystèmes aquatiques potentiellement impactés
- → La dureté de l'eau réduit potentiellement la biodisponibilité de l'U et des autres métaux

Herlory et al. (2013) Ecotoxicology

Approche « écologique »

EXEMPLE DU RITORD (FRANCE)

- Pas d'effet visible sur la biodiversité [richesse spécifique (S = 55 à 74), diversité (H'= 2,5 à 3,2)] ni le fonctionnement [biomasse, photosynthèse]
- Différences dans la composition de la communauté [espèces indicatrices]
- Attribuées aux variables caractérisant les effluents « dans leur ensemble » : U, mais aussi Cl, Ba, Al, Mn...
- → Rôle de l'uranium par rapport aux autres variables environnementales et interactions entre substances ?

Variable	ρs			
Corrélations individuelles				
Cl	0.466***			
<u>U_{diss}</u>	0.377***			
Ba _{diss}	0.321***			
ORP (redox)	0.294***			
Conductivity	0.273**			
Al_acc	0.258**			
Mn _{diss}	0.270**			
Ba _{acc}	0.250**			
TIC	0.151**			
Na	0.165**			
Fe _{acc}	0.249**			
NH ₄	0.176**			
Temperature	0.168*			
Mn _{acc}	0.188*			
Fe _{diss}	0.211*			
рН	0.165*			
Flow	0.088*			
TOC, SPM, O ₂ , Al	NS			

^{***} $p \le 0.001$; ** $p \le 0.01$; * $p \le 0.05$

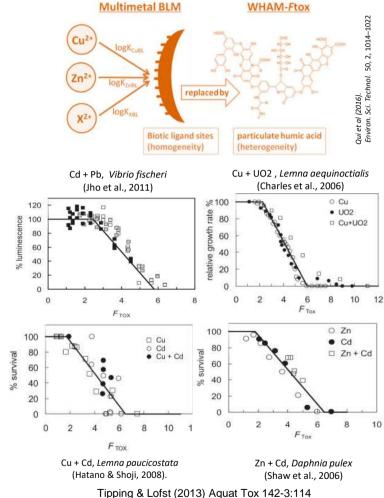
Approche « écologique »

AU-DELÀ DES CORRÉLATIONS ?

Généralisation de la biodisponibilité des métaux aux mélanges (WHAM-FTOX : biodisponibilité par analogie avec lla complexation sur les acides humiques)

Toxic Function:
$$F_{TOX} = \sum \alpha_M v_m$$

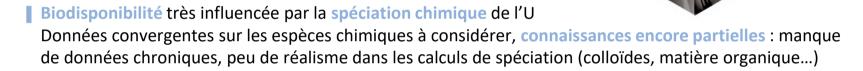
 $\alpha_{\rm M}$: quantité de métal M accumulé (mmol. g^{-1})


V_M : coefficient de toxicité

Toxic Response:
$$TR = \frac{F_{TOX} - F_{TOX,LT}}{F_{TOX,UT} - F_{TOX,LT}}$$

 $F_{TOX,LT}$: lower threshold (pas d'effet)

 $F_{TOX,UT}$: upper threshold (effet maximum)


> potentiel descripteur intégré des effets des métaux traces (dont l'uranium) pour les études écologiques (mais encore peu développé)

Conclusion

L'ÉCOTOXICITÉ DE L'URANIUM...

- Dominance de la toxicité chimique (métal trace) ne pas oublier la contribution des descendants/isotopies particulières
- Connaissances principales sur l'écotoxicité en eau douce (peu par exposition aux sédiments ou par voie trophique)

- Détermination d'une NQE à l'étude dans le cadre de la DCE Nécessite un consensus sur les données d'écotoxicité critiques à considérer et sur les choix méthodologiques (cible de protection critique, traitement statistique, facteur de sécurité)
- Contamination multiple (la norme plutôt que l'exception ; ex. mines) méthodologies pour l'évaluation du risque cumulé (a priori), pas d'interactions pharmacodynamiques fortes (synergie/antagonisme), mais l'attribution univoque des effets écologiques à l'U reste complexe
- Complémentarité des approches « écotoxicologique » et « écologique » avec l'approche « substance »

Merci pour votre attention

https://www.irsn.fr/FR/Larecherche/publications-documentation/fiches-radionucleides/

Rodolphe GILBIN rodolphe.gilbin@irsn.fr

