

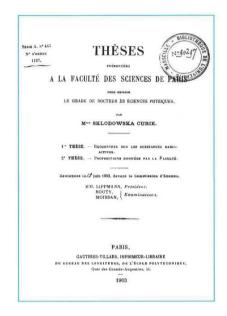
ANALYSE DE L'URANIUM DANS LES ÉCHANTILLONS DE L'ENVIRONNEMENT

Céline AUGERAY, Maxime MORIN, Eric CALE, Kévin GALLIEZ

PSE- ENV/Service d'Analyses et de la Métrologie de l'Environnement (SAME)

Journées SFRP Au cœur de l'uranium Les 1^{er} & 2 février 2023

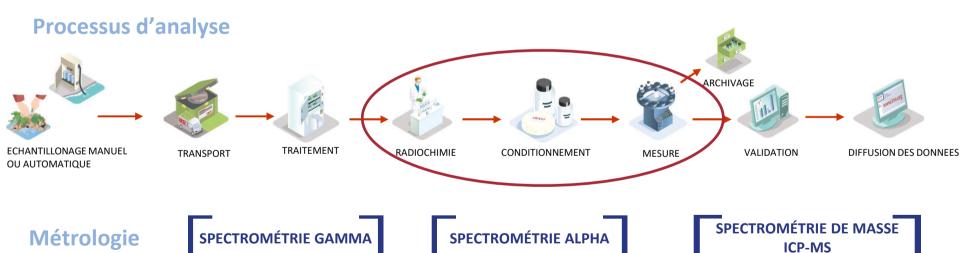
SAME en quelques chiffres

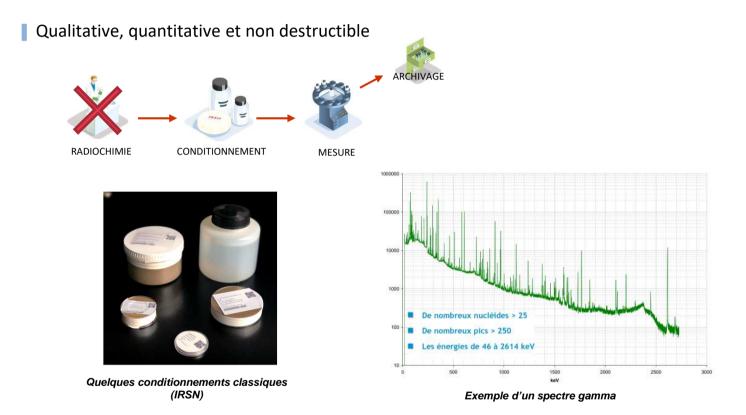

L'uranium

UN PEU D'HISTOIRE

- Découvert en 1789 par le chimiste allemand Klaproth
- Sujet de thèse Marie-Curie en 1897 « Etude des rayonnements uraniques » découverts par Henri Becquerel
- Années 1930 : découvert de l'isotopie de l'uranium (Dempster : ²³⁵U ; Nier : ²³⁴U)

[ISOTOPES (RADIONUCLÉIDES) NATURELS DE L'URANIUM


	²³⁸ U	²³⁵ U	²³⁴ U	²³⁶ U	
Période (an)	4,5x10 ⁹	7,0x10 ⁸	2,4x10 ⁵	2,3x10 ⁷	
Abondance isotopique naturelle (atome %)	99,3 %	0,7 %	5x10 ⁻⁵ %	10 ⁻¹⁵ –10 ⁻⁷ %	
Principaux rayonnements émis	alpha	alpha gamma	alpha		
Origine	Primordial	Primordial	Chaine de décroissance ²³⁸ U	Capture neutronique ²³⁵ U	


Pourquoi quantifier l'uranium?

IRSN

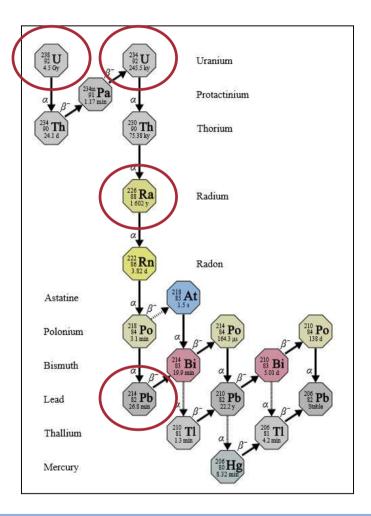
[LA SPECTROMÉTRIE GAMMA

Détecteur gamma Germanium dans son château de plomb

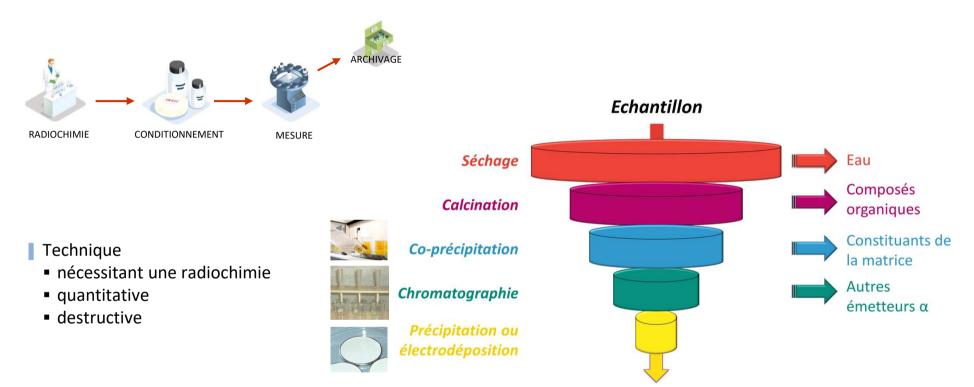
Simple à mettre en œuvre et efficace cependant nécessite un bon niveau d'expertise

LA SPECTROMÉTRIE GAMMA

238[]

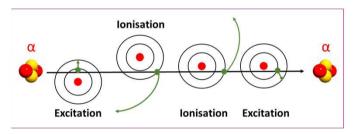

- <u>L'activité de l'uranium 238 ne peut-être directement déterminée</u>. Cet isotope n'émet qu'une raie gamma de faible intensité (0,068 %) et à basse énergie (49,6 keV)
- Les raies émises par ses descendants peuvent être utilisées, si l'on fait l'hypothèse d'équilibre radioactif \Rightarrow ²³⁴Th (63,3 keV et 92,5 keV) et ^{234m}Pa (1001 kev)

²³⁴U


- Cet isotope émet, comme l'uranium 238, une raie gamma de faible intensité (0,12 %) et à basse énergie (53,2 keV).
- Pour son descendant ²³⁰Th, émetteur à 68 keV (0,38%)

²³⁵U

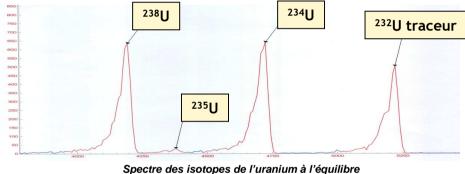
■ la raie la plus intense (57,1 %) à 185,7 keV est perturbée par une raie du radium 226 à 186,2 keV (3,59 %) dont la contribution doit être déduite, par la connaissance de ses descendants situés au-delà du radon 222, en particulier le ²¹⁴Pb à 295,22 keV (18,5 %) dont il faut pouvoir garantir l'équilibre.

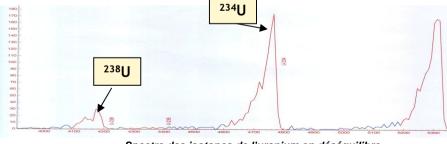

[LA SPECTROMÉTRIE ALPHA

Isotopes de l'uranium prêt pour la mesure

LA SPECTROMÉTRIE ALPHA

La technique de mesure utilisée est la spectrométrie alpha par semi-conducteur (Silicium) : les particules alpha émises par l'échantillon interagissent dans le matériau du détecteur, appelé PIPS, et produisent un signal transmis au logiciel d'acquisition.

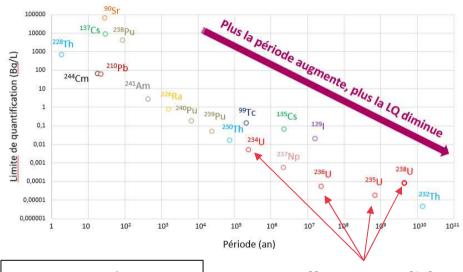



Semi-conducteur seul (à gauche le contact, à droite la surface de détection)

Chambre semi-conduteur

• Rendement de comptage : 10 à 16%

Résolution : 30 à 45 keV



Spectre des isotopes de l'uranium en déséquilibre

LA SPECTROMÉTRIE MASSE – ICP-MS

 $A = \lambda N$

Excellents candidats

Technique

- quantitative
- destructible
- nécessitant une radiochimie
 - sans ou avec pour les eaux
 - avec pour les autres matrices

Mise en solution robuste

Minéralisation acide sur plaque chauffante (5 g)

Fusion alcaline (0,5 g)

Meilleurs performances que la spectrométrie alpha pour une prise d'essais identique

LA SPECTROMÉTRIE MASSE – ICP-MS

Spectrométrie de Masse à Plasma à Couplage Inductif

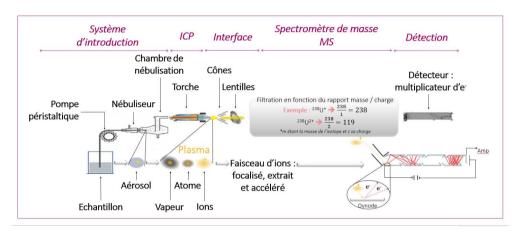
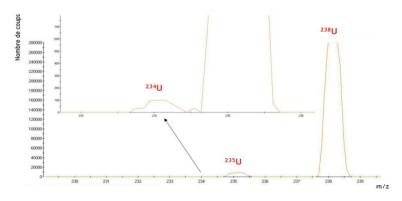



Schéma de principe de l'ICP-MS

- Etalonnage
- Externe (droite d'étalonnage)
- Dilution isotopique (traceur ²³³U)

Spectre de masse des isotopes de l'uranium

[BILAN DES PERFORMANCES DES TECHNIQUES (PROTOCOLES DE ROUTINE AU SAME)

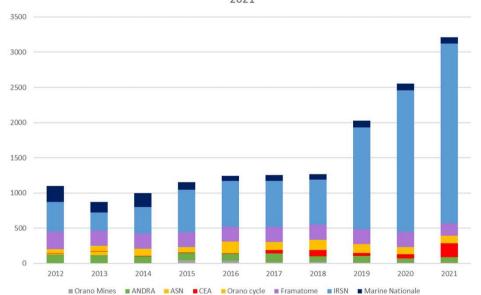
Technique	Analyse	Mise en œuvre	Seuil de détection ⁽¹⁾ ou de quantification ⁽²⁾ Ordre de grandeur	Incertitude	Délai d'analyse approximatif	Prise d'essai	Texte de référence
Spectrométrie Gamma ⁽¹⁾	²³⁴ U, ²³⁵ U, ²³⁸ U	Simple Non destructive Bon niveau d'expertise	10 à 100 Bq/L ou kg selon l'isotope	10 %	24 heures	500 mL	NF EN ISO 17294-2 NF EN ISO 18589-3

Les tendances métrologiques à l'IRSN

RECHERCHE

- Spectrométrie de masse :
 - rapports isotopiques ²³⁶U/²³⁸U très bas niveau
 - couplage ablation laser-ICPM/MS...
- Radiochimie: automatisation
- Prélèvement : DGT....
- Spéciation de l'uranium

RÉPONSE AUX SITUATIONS INCIDENTELLES


Analyse rapide

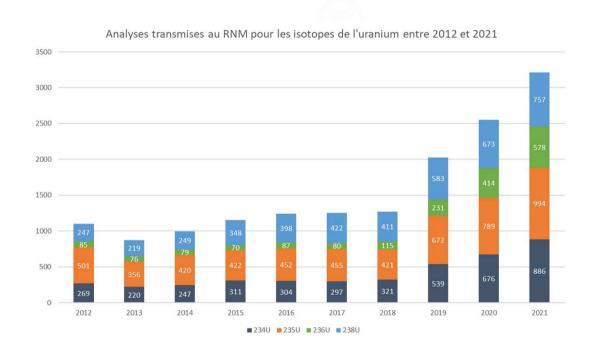
Le réseau national de mesures de la radioactivité de l'environnement (RNM)

QUELQUES CHIFFRES

3215

ANALYSES RÉALISÉES EN 2021

+ 500 résultats par an



EVOLUTION DES ANALYSES DEPUIS 3 ANS À L'IRSN (SAME)

Le réseau national de mesures de la radioactivité de l'environnement (RNM)

QUELQUES CHIFFRES

37% eaux22% aérosols atmosphériques20% sols et sédiments

NATURE DES MATRICES DES ANALYSES SUR 10 ANS

234, 235 et 238

ISOTOPES DE L'URANIUM

Conclusion et perspectives

3 TECHNIQUES D'ANALYSES

ENJEUX

Spectrométrie gamma

Spectrométries alpha

Spectrométrie de masse ICP-MS

Augmenter nos **capacités** d'analyses des isotopes de l'uranium

Adapter l'analyse au **besoin** de compréhension du comportement de l'uranium dans l'**environnement**

Merci pour votre attention

AUGERAY Céline celine.augeray@irsn.fr

Merci à l'équipe du SAME

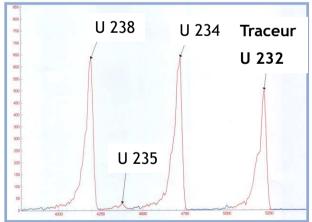
- Cossonnet C., Agarande M., Bérard P., Franck D., Montégue., A., Perrin M.L., Witschger O., L'Uranium, de l'environnement à l'homme. EDP Sciences. Collection IPSN. Chapitre 5 : 145-185.
- Hou X., Roos P., Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal. Chim. Acta 2008; 608(2): 105-139.
- Ansoborlo E., Aupiais J., Baglan N., Mesure du rayonnement alpha. CETAMA. Editions TEC et DOC.
- Lehto J., Hou X., Chemistry and analysis of radionuclides. Wiley-vch.

LA SPECTROMÉTRIE GAMMA

$^{238}U \Rightarrow ^{234}Th$

- <u>L'activité de l'uranium 238</u> ne peut-être directement déterminée. Cet isotope n'émet qu'une raie gamma de faible intensité (0,068 %) et à basse énergie (49,6 keV)
- Les raies émises par ses descendants peuvent être utilisées, si l'on fait l'hypothèse d'équilibre radioactif Dans la plupart des échantillons de l'environnement cette hypothèse est seulement vérifiée pour les premiers éléments de la chaîne et jusqu'au radium ²²⁶Ra. Au-delà, les équilibres sont perturbés par le comportement du descendant gazeux qu'est le radon 222

²³⁵U


■ la raie la plus intense (57,1 %) à 185,7 keV est perturbée par une raie du radium 226 à 186,2 keV (3,59 %) dont la contribution doit être déduite, par la connaissance de ses descendants situés au-delà du radon 222, en particulier le ²¹⁴Pb à 295,22 keV (18,5 %) dont il faut pouvoir garantir l'équilibre.

²³⁴U

- Cet isotope émet, comme l'uranium 238, une raie gamma de faible intensité (0,12 %) et à basse énergie (53,2 keV). LD est de plusieurs centaines de Bq/kg.
- Pour son descendant ²³⁰Th, émetteur à 68 keV (0,38%), la LD est 3 fois plus basse

a- spectrométrie alpha : Uranium isotopique

500 ml

Traceur U232

Évaporation pré-concentration

Remise en solution acide

Transfert sur résine

Élution et filtration

Co-précipitation et dépôt sur filtre

Spectrométrie α

LD = 0,005Bq/l