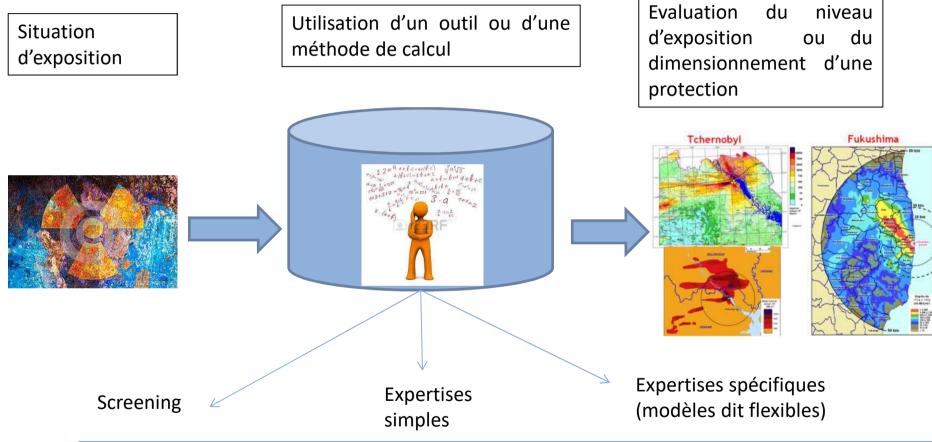
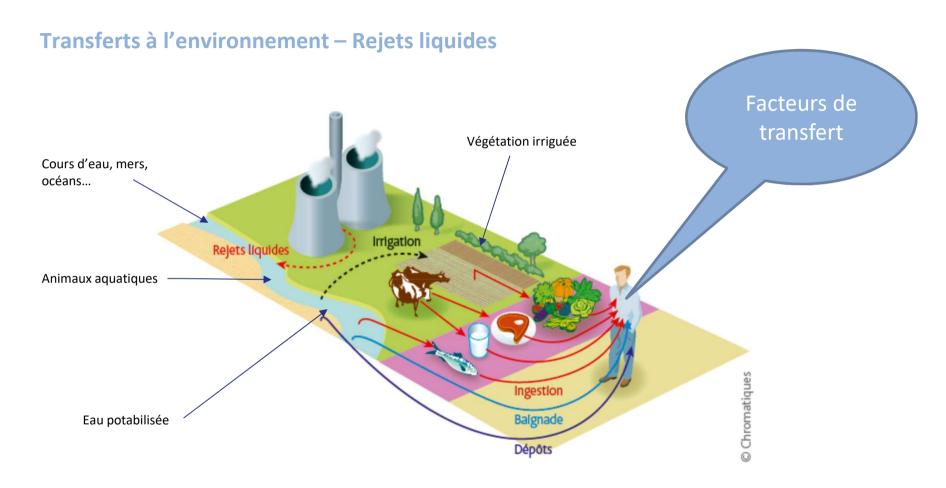
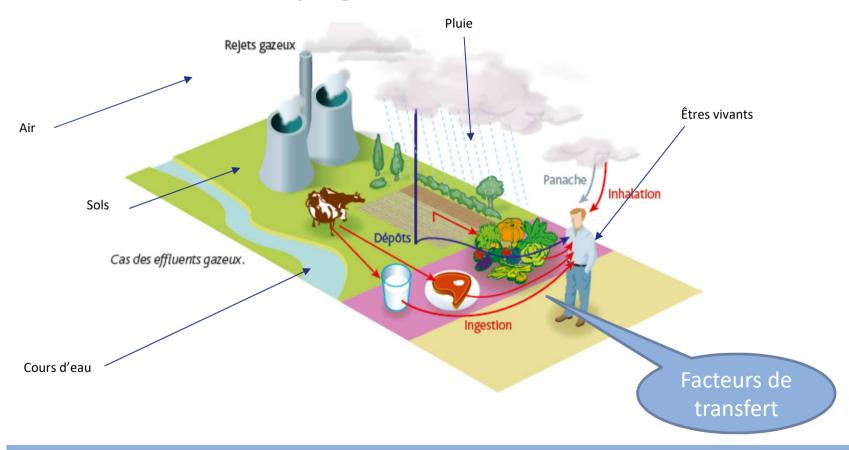

LES MESURES AU SERVICE DES MODÈLES ET LES MODÈLES AU SERVICE DES MESURES

Journées Techniques « Faune, Flore, Denrées et Radioactivité » - SFRP - 18 novembre 2021


Sophie VECCHIOLA – Rémi VERSCHAEVE DE SOUSA

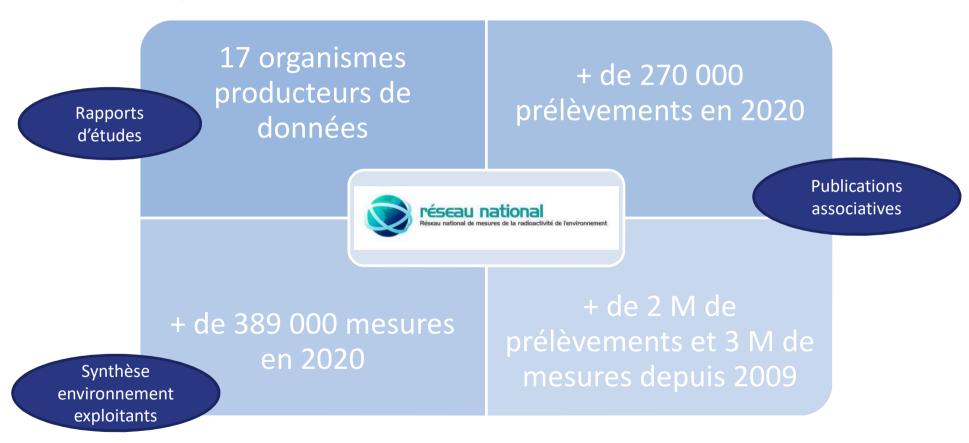

Un peu de théorie


Evaluation d'impact?

IRSN

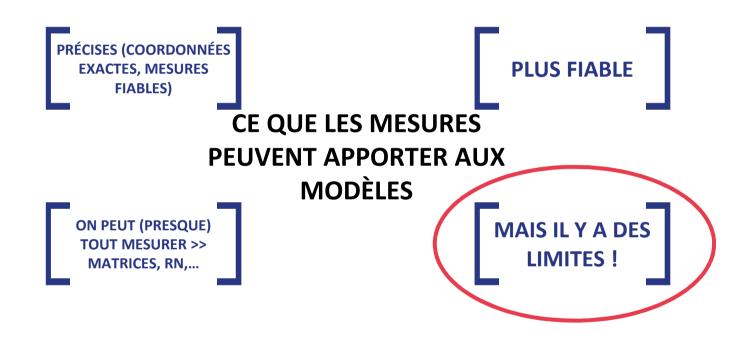


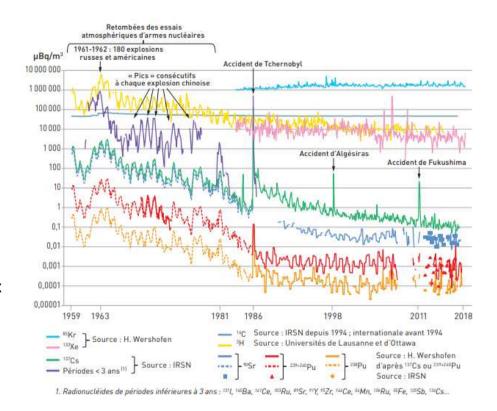
Transferts à l'environnement – Rejets gazeux


Données disponibles sur les niveaux dans l'environnement

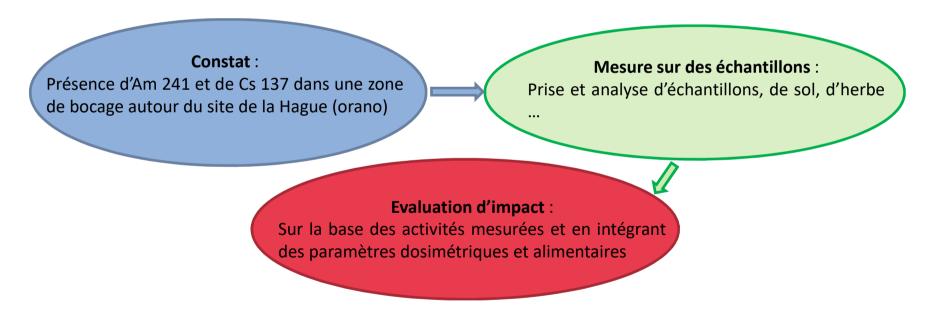
Données disponibles sur les niveaux dans l'environnement

Comment associer modèles et mesures


[MESURES >> MODÈLES


Mesures >> Modèles

Mesures >> Modèles


LES LIMITES

- Le temps et l'espace (on ne peut pas mesurer partout tout le temps)
- Les incertitudes liées au prélèvement et à la mesure
- La diminution des niveaux environnementaux

De la mesure au calcul d'impact

[DU REJET EN MILIEU AQUATIQUE À L'ACTIVITÉ DANS L'ENVIRONNEMENT (EXEMPLE DE LA HAGUE)

Appréhender un modèle : projet DIFLU (Dispersion de Fluor) afety Atmospheric Modélisation avec des Expérimentations modèles CFD de traçage à l'helium stable Mesure des paramètres météorologiques fluidyn -PANACHE 666.7 Premiers enseignements: 500.0 ■ Tendance des modèles à surestimer la concentration au centre du panache 333.3 • Forte sensibilité des résultats aux conditions météorologiques en conditions aux limites 166.7

Comment associer modèles et mesures

[MODÈLES >> MESURES

Modèles >> Mesures

POSSIBILITÉS « QUASI » ILLIMITÉES (PRÉDICTIFS, QUANTITÉS NON MESURABLES) ORIENTATION /
OPTIMISATION DES
STRATÉGIES DE MESURES

CE QUE LES MODÈLES APPORTENT AUX MESURES

PARAMÈTRES SIMPLES À CHANGER (PARFOIS...)

Modèles >> Mesures

[LES LIMITES

- Qualités des données d'entrée utilisées pour la modélisation (données du rejets, données météorologiques, rations alimentaires ...)
- Approximations numériques et physiques des modèles (hypothèses simplificatrices, valeurs des paramètres par défauts ...)

Etude radiologique de site (ERS)

Comparaison Modèle - Mesure

- Confronter les résultats des modèles avec les mesures issues des études de terrain
- Premiers résultats (site de Cruas):

 bonne correspondance entre les
 mesures et les valeurs calculées
 pour les activités volumique dans
 l'air

Comparaison Modèle - Modèle

- Modéliser les transferts jusqu'à l'impact aux personnes en utilisant différents outils de calcul
- Etudier les paramètres
- Situer les réponses des modèles les unes par rapport aux autres.

Orienter les stratégies d'échantillonnage, d'acquisition et d'exploitation des données

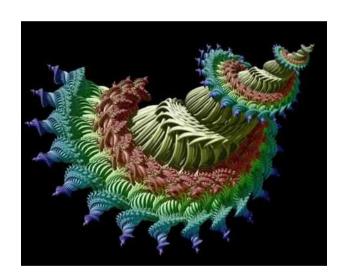
- Positionnement des appareils/ stratégie de mesure
- Représentativité de certaine mesures
- Choix des appareils en fonction de leurs caractéristiques métrologiques et des niveaux d'activités attendus

Modèle – Mesure : résultats préliminaires

[CNPE CRUAS MEYSSE – MESURES AS1 AVEC EDF

Activité volumique dans l'air Bq/m³		³H-HTO	¹⁴ C		F 600	60.0	127.0
			CO ₂	CH ₄	⁵⁸ Co	⁶⁰ Co	¹³⁷ Cs
SYMBIOSE	Mesures de vents 2015- 2016 à 10m	4,3.10-2	3,9.10 ⁻³	1,6.10-2	1,5.10 ⁻⁷	8,5.10-8	5,6.10 ⁻⁸
CONDOR	Rose des vents 2015- 2016	4,4.10-2	4,0.10 ⁻³	1,6.10-2	1,6.10 ⁻⁷	8,7.10-8	5,8.10 ⁻⁸
Mesures	Etude mai 2015 à mai 2016 (moy des activités >SD)	5,2.10 ⁻²	1,7.10 ⁻²	3,1.10 ⁻²	3,2.10 ⁻⁷	1,2.10 ⁻⁷	2,1.10 ⁻⁷

(1) Activité mesurée - bdf = 0,062-0,01

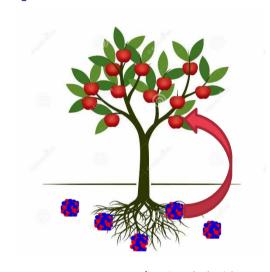

(2) Activité mesurée - bdf = 0,064-0,0469

(3) Activité mesurée - bdf = 0,031-0,0002

(4) Activité mesurée - ≈ bdf = 0,41 μBq/m3

Comment associer modèles et mesures

[MESURES >> MODÈLES >> MESURES >> MODÈLES...


Itération modèles >> mesures

EXEMPLE D'UN SITE MARQUÉ

- En 2016, en réponse à l'autorité locale, l'IRSN effectue des prélèvements/mesures des sols sur une parcelle potentiellement marquée en radionucléides naturels
- → Mesures de débits d'équivalent de dose comprises entre 100 nSv/h et 1 μSv/h
- → Activités en ²³⁵U et en ²²⁶Ra dans <u>les sols</u> anormalement élevées
- L'IRSN réalise une évaluation dosimétrique grâce à ces résultats

Itération modèles >> mesures

EXEMPLE D'UN SITE MARQUÉ

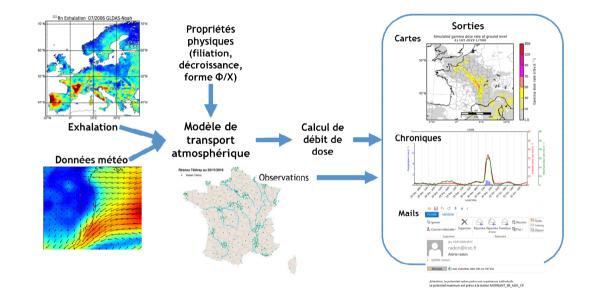
FT _{sol-fruit} =	Bq/kg du végétal (partie consommable)			
' 'sol-fruit [—]	Bq/kg de sol			

Exposition en mSv/an	Moyenne	Maximale
Exposition externe	5,01.10 ⁻¹	8,47.10 ⁻¹
Exposition interne par inhalation de poussières	1,11.10-3	1,29.10-3
Exposition interne par ingestion de végétaux (potager)	5,34.10 ⁻³	8,44.10 ⁻³
Exposition interne par ingestion de végétaux (verger)	3,62	3,88
Exposition interne par ingestion d'aliments d'origine animale	4,61.10 ⁻⁶	5,66.10 ⁻⁶
Exposition interne par ingestion par inadvertance de sol	1,64.10 ⁻²	1,79.10-2
Total	4,14	4,75

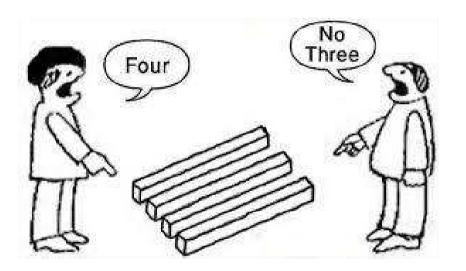
→ Consommation de fruits = principale voie d'exposition, sur la base d'hypothèses sur les facteurs de transfert racinaire (fruits non disponibles au moment des prélèvements)

Itération modèles >> mesures

EXEMPLE D'UN SITE MARQUÉ


- En 2017, réalisation des prélèvements sur les fruits de la parcelle afin de confirmer les activités calculées dans le cadre de l'évaluation de dose
- Utilisation des facteurs de transfert déterminés grâce aux mesures sur les sols et les fruits (dans le cadre de ce dossier)

Le projet « Météo Radon » - IRSN-SESUC/SEREN


Rex Fukushima:

- Des pics de débits de doses observés pendant l'accident sont dus au dépôt humide de panache en altitude
- Similitude de ces pics avec ceux attribués au radon
- Utiliser le radon pour transférer et valider les développements fait dans le cas de l'accident de Fukushima à la France
- Alerter la télésurveillance de potentiels pics de radon pour faciliter l'analyse des déclanchement de balise

Les perspectives

[ET MAINTENANT?

Les perspectives

- Mieux prendre en compte les besoins en données des modèles dans la planification de la surveillance
- Qualifier les modèles et leurs utilisations (partenariat fort entre les mesures, les développeurs de modèles et les utilisateurs de ces modèles)
- Améliorer la qualité des modèles en améliorant les bases de données de paramètres de transfert entre compartiments qui y sont utilisés et par conséquent notre maîtrise des résultats
- Rationnaliser les prélèvements pour la surveillance en ciblant mieux les points intéressants

Merci de votre attention

Quelques projets en cours à l'IRSN

- Projet DIFLU (P. Laguionie)
- **Projet Météo du radon** (A. Quérel, D. Quélo, T. Doursout, C. Gréau, N. Mansouri)
- Modélisation inverse (O. Masson, O. Saunier): Amélioration de l'estimation d'un terme source (amplitude, cinétique, localisation) en exploitant les mesures dans l'environnement
- **DISKRYNOC** (O. Connan, I. Korsakissok): validation de modèle et de l'inversion en champ proche
- ERS Saint Alban (L. Saey): présentation du 17/11 en session 3
- Projet MEMOREX (L. Pourcelot): Comportement du Cs 137 dans les pâturages français
- Etc ...

