

SCENARIOS ET EFFETS POTENTIELS D'UNE ATTAQUE CHIMIQUE

Les actes de malveillance Société Française de Radioprotection Paris 7 avril 2005

PCS C. RENAUDEAU

École d'application du Service de santé des armées Direction du Service de santé des armées Région Terre lle-de-France

Plan

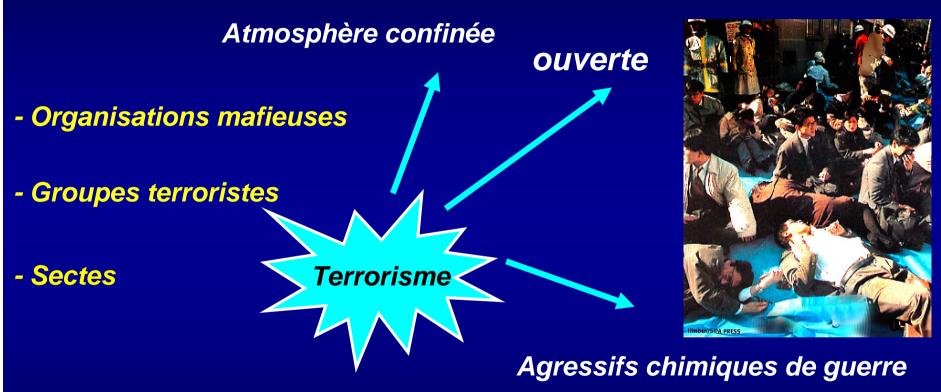
> Les types d'attaques chimiques

- > Les paramètres de l'attaque chimique
- > Les principaux agressifs chimiques

> L'intérêt de l'identification du toxique

1. Les types d'attaques chimiques

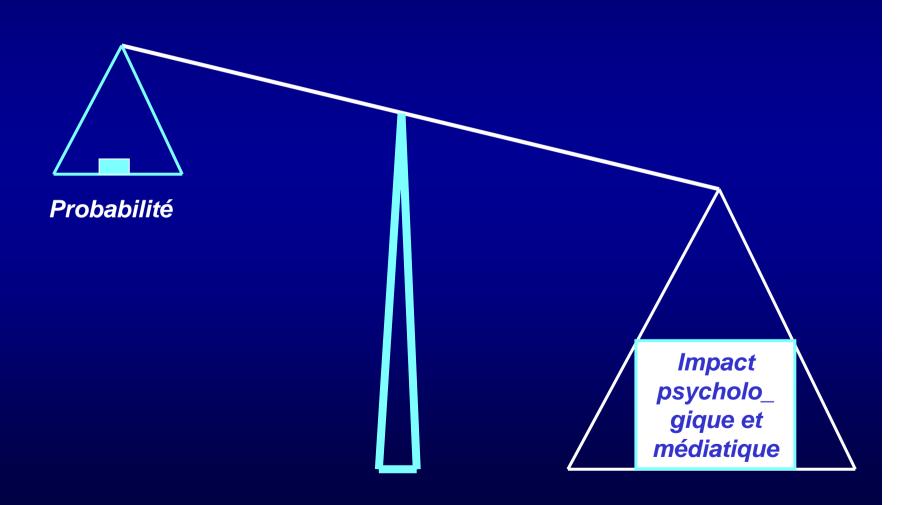
Dépôt industriel de produits chimiques


- 1978 : Camping de Los Alfaquès (propylène) 216 morts et 200 brûlés
- 1984 : Bhopal (isocyanate de méthyle) 6 500 décès par OAP 150 000 intoxiqués
- 1992 : Dakar (ammoniac) 150 morts 500 intoxiqués
- ✓ Toxique généralement à l'état vapeur
- ✓ Concentration élevée à proximité

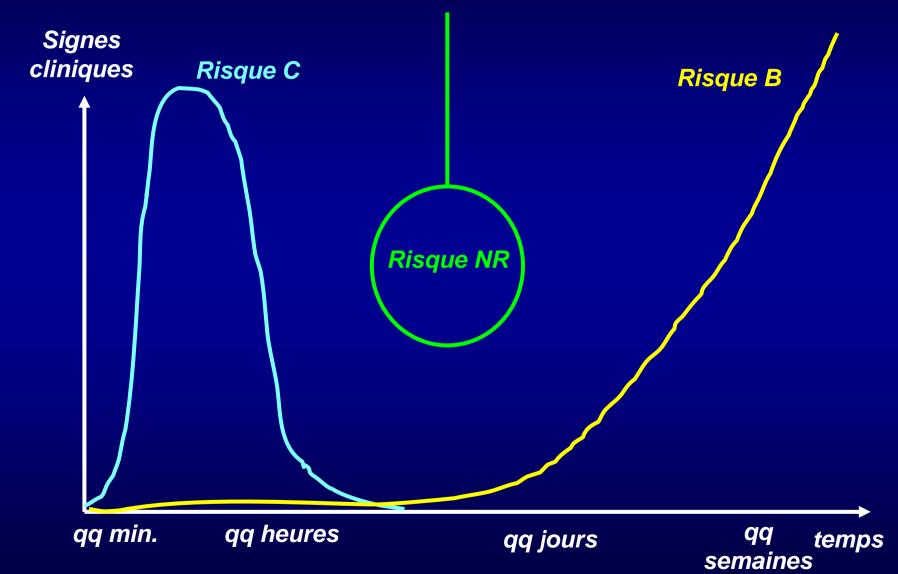
Vecteurs

Emploi des toxiques de guerre

- Commandité par un pays proliférant


- Fabriqués
- Détournés
- Récupérés (vielles munitions)

L'objectif des terroristes


La déstabilisation sociale et politique

La cinétique des différents risques

2. Les paramètres de l'attaque chimique

Les effets potentiels d'une attaque chimique dépendent :

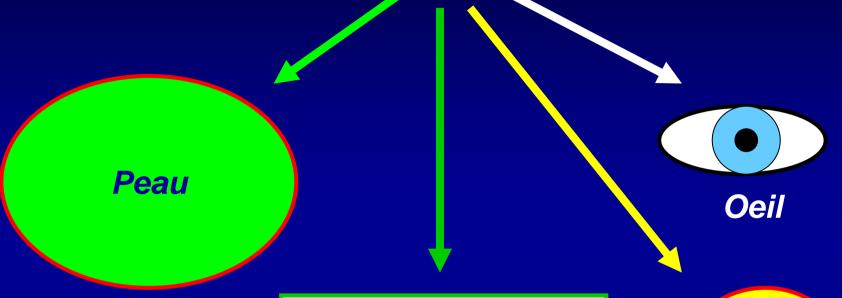
- Du toxique utilisé, de ses propriétés physico-chimiques
- De sa toxicité
- Du mode de dispersion choisi
- De la quantité de toxique utilisée
- Du nombre de personnes exposées
- Des conditions météorologiques ou environnementales

L'état physique du toxique au moment de l'emploi

> Conditionne la nature du danger :

Importance des conditions météorologiques (température, stabilité atmosphérique)

Propriétés physico-chimiques des toxiques de guerre et toxicité



	CtL ₅₀ (mg.mn/m ³)	DL ₅₀ (mg/kg)	DL ₅₀ (mg)	Volatilité (mg/m³)	Type de danger	Persistance
Sarin	100	24	1700	17 000	Liq + vap	2h à 10 °C 10 mn à 40°
Tabun	400	14	1000	612	Liq + vap	3j à 10 °C
Soman	70	0,4	30	3000	Liq + vap	< 24 h à 40°
VX	50	0,14	10	8 à 10	Liquide	1 sem. à 10° < 2j à 40°C
Ypérite	1500	100	7000	625	Liq + vap	2 à 7 j à +10°C < 3 j à + 15°C
Lewisite	1500	35	2500	4500	Liq +vap	
Phosgène	3200	-	-	6370	Vapeur	qq min.
Chlore	16000	-	-	19370	Vapeur	-
HCN	1000	0,9		1075	Vapeur	qq min.

Voies de pénétration du toxique

Voies respiratoires

Tube digestif

3. Les principaux agressifs chimiques

Produits chimiques utilisables

Agressifs chimiques militaires

Toxiques chimiques industriels

Vésicants

Cyanures
Neurotoxiques organophosphorés
Suffocants

Produits chimiques divers

Les différentes classes de toxiques chimiques

NOP

- Agents G

- Agents V

Tabun, Sarin,

Soman

VX ou A4

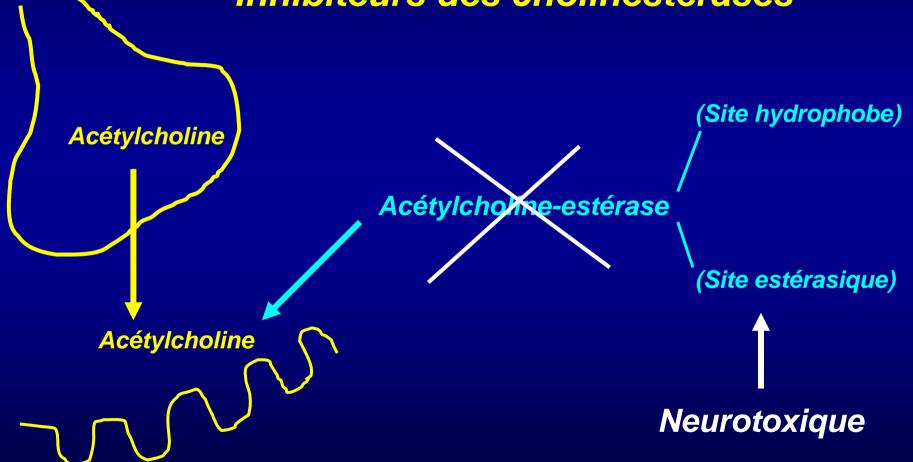
Suffocants

- phosgène,

- Cl₂, NH₃, ...

Incapacitants

Vésicants Ypérite, Lewisite Toxiques
Cellulaires
HCN, AsH₃


Hypoxie multifactorielle

Mécanisme d'action des NOP

Inhibiteurs des cholinestérases

Action des NOP

NOP,

Inhibiteurs des cholinestérases

Atropine

Excès d'acétylcholine

Action sur les récepteurs

Muscariniques

- Glandes
- Muscles lisses
- Nerfs crâniens (SNC)

Syndrome central

Nicotiniques

- Muscles squelettiques
- Synapses ganglionnaires
- Glandes surrénales

Benzodiazépines

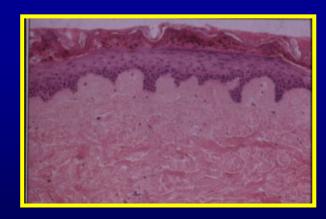
La symptomatologie dépend de :

- la dose, la voie de pénétration
- la forme physique du toxique

	Vapeur	Liquide		
Délai apparition des symptômes	Immédiat et maximal	Quelques min. à plusieurs heures		
	Peu concentrées	Expo. modérée		
Localisation Loco-régionale	- myosis serré - sécrétions ↑ (rhinorrhée, lacrymales, bronchiques) - respiration sifflante - bronchostriction	- Sudation localisée, - Fasciculations au pt de contact puis - Signes digestifs		

Exposition massive à des vapeurs ou contact percutané à forte dose

Hypoxie sévère en 1 à 30 min : - Paralysie des centres respiratoires,


- Blocage musculaire (diaphragme, intercostaux, pharyngiens)
- Bronchospasme, Sécrétions profuses. Crises épileptiques en qq min.

L'ypérite

Entre 1 et 12 heures:

- Erythème douloureux (1 à 3 h)
- Prurit intense
- Œdème sous-cutané (8 à 12 h)

L'ypérite (2)

L'Ypérite : Atteinte respiratoire

Faible intoxication : en 12 h ou plus

- Irritation et congestion des voies aériennes supérieures
- Laryngite, Trachéobronchite

Forte intoxication : entre 4 et 12 h

- Voix rauque, (dyspnée et dysphonie)
- Nécrose épithéliale des muqueuses

Formes les plus graves : 1ers jours

- Lésions hémorragiques pouvant → oedème
- Broncho-pneumonie inflammatoire

Ypérite : Effets systémiques

Au niveau gastro-intestinal

- Ædème et nécrose de la muqueuse
- Inhibition de régénération
- Œsophagite et gastrite
- Anorexie, nausées, vomissements
- Diarrhées sanglantes

Au niveau hématopoïétique

- Inhibition de la prolifération des cellules souches
- Augmentation initiale des leucocytes (stress) puis chute après 2 à 3 jours
- Chute plus tardive des érythrocytes et des plaquettes
- Dépression médullaire et des tissus lymphoïdes

Neurologique

- Effets cholinergiques (myosis, nausées, vomissements)
- SNC : malaise, fatigue, anxiété, névrose, troubles de la personnalité

Les suffocants

(Phosgène, diphosgène, chloropicrine, chlore PFIB, ammoniac, isocyanate de méthyle,)

Mécanisme d'action

- Dépend de leur hydrosolubilité
- Voies aériennes supérieures : une partie s'hydrolyse → HCI + CO₂
- Peu soluble dans l'eau directement dans les alvéoles
- Au niveau des alvéoles : réaction d'acylation avec les groupements nucléophiles (-NH2, -OH, -SH)

> Conséquence de l'acylation

- Dénaturation des protéines et lipoprotéines membranaires ⇒ altération irréversible des membranes de structures
- Augmentation de l'eau dans l'épithélium interstitiel --- OAP

Dérivés cyanés : symptomatologie

- > Forme foudroyante
 - En qq secondes à qq min. : coma convulsif, apnée, collapsus cardiovasculaire
- Forme aiguë: perte de connaissance brutale succédant parfois à : des céphalées, des vertiges, de l'ébriété, une oppression thoracique et de l'angoisse

atteintes : - métabolique : hyperlactacidémie

- neurologique : agitation, obnubilation, coma

- respiratoire : hyperpnée puis apnée

- cardiovasculaire: hypotension, collapsus, asystole

➤ Chlorure de cyanogène Symptomatologie identique + irritation des yeux (lacrymogène), du nez (rhinorrhée) et des voies aériennes

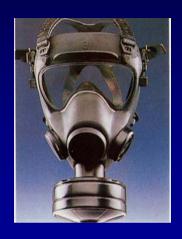
Signes cliniques rencontrés

	Irrita- tion (Yeux, peau)	Voies resp. sup	Voies resp. prof.	Cardio vascul	Neuro logiq.	Méta- boliq.	Cuta- nés	Diges- tifs
Lacry mogè.	++	++	+				<u>+</u>	
Suffo- cants	++	++	++ OAP	Hypo- tension				
HCN	± peau	+	hypoxie	++	++	++		
NOP	++ V - L	++	+++	<u>+</u> Peu net	+++		± L fugaces	++
Ypéri- te	+ Différés	++	+++ Différés		+		+++ Différés	++

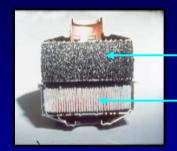
4. L'intérêt de l'identification du toxique

Permet d'apprécier

- Le risque de transfert de contamination ⇒
 - Mesures de protections adaptées
 - Décontamination des victimes obligatoire ou non
- La durée de la rémanence du toxique
- Les symptômes attendus : effet retard ou non
- La prise en charge thérapeutique
 - Traitement symptomatique
 - Traitement spécifique si des antidotes existent



Mesures de protection adaptées



Respiratoire, yeux, face

ARFA

T3P

Filtre en charbon activé
Filtre anti-particules

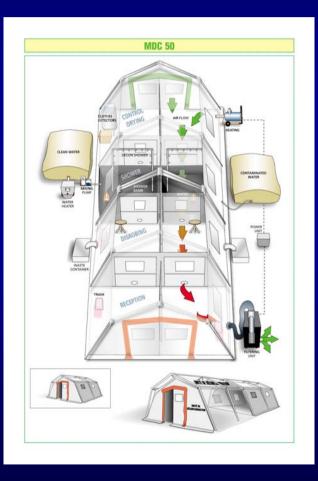
Protections cutanées

Scaphandre chimique

TOM

TLD 93

Dupont de Nemours



Décontamination

Module de décontamination

Caractéristiques fonctionnelles

Etapes de la décontamination

- Poudre adsorbante sur les parties découvertes
- Déshabillage
- ➢ Solution oxydante d'HCIO à 2,5 ° de chlore actif
- > Temps de contact de 3 min.

▶ Douche savonneuse grand volume (3min) + entraînement mécanique

➢ Douche de rinçage pendant 3 min.

Les moyens de détection de terrain

Toxiques liquides

PDF1

AP2C + S4PE

Toxiques vapeurs

Detindiv (NOP)

Toxiques OP et S

Tubes réactifs et pompes Dräger

Prise en charge médicale

- ▶ Traitement symptomatique + + +
 - Ventilatoire (O2 et respirateurs manuels)
 - Cardio-circulatoire
- > Administration d'antidotes

N.O.P.

Acide cyanhydrique

Lewisite

Conclusion

Quel que soit le scénario, une attaque chimique =

- Risque multiforme, peut concerner de nombreux produits
- Cause d'une désorganisation massive
- Victimes difficiles à maîtriser, beaucoup s'enfuient avant l'arrivée des secours et se présenteront spontanément à l'hôpital de proximité
 - ⇒ Risque de transfert de contamination ?
- Différentes catégories de blessés ⇒ triage chimique des victimes pour définir le type de décontamination,
- Si le ratio médecins /nombre de victimes est favorable, gestes de survie réalisés avant la décontamination
- Importance de la médicalisation au niveau du lieu de l'évènement .
- Besoins en oxygène et masques à usage unique +++