

Faire avancer la sûreté nucléaire

Les mesures au service des modèles et les modèles au service des mesures

Tutoriale Congrès national SFRP 2019

Introduction

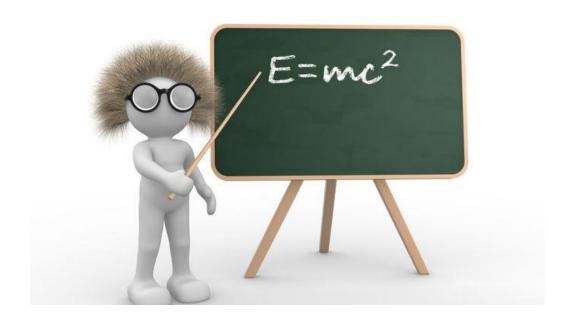
C'était il y a deux ans...

Tutoriale 2017: Principales conclusions

- Limites des modèles utilisés à la radioprotection des rejets dans l'environnement
 - Réalisme des dépôts dépend directement :
 - des données disponibles pour les vitesses de dépôt sec et les constantes de lessivage
 - de la connaissance des formes physico-chimique des radionucléides
 - du type d'orographie considérée (rugosité des surfaces)
 - Manque de données disponibles et fiables sur les paramètres liés aux transferts des radionucléides dans les différents compartiments
- Modèles fournissent des informations sur les niveaux d'activités attendus et leur localisation.

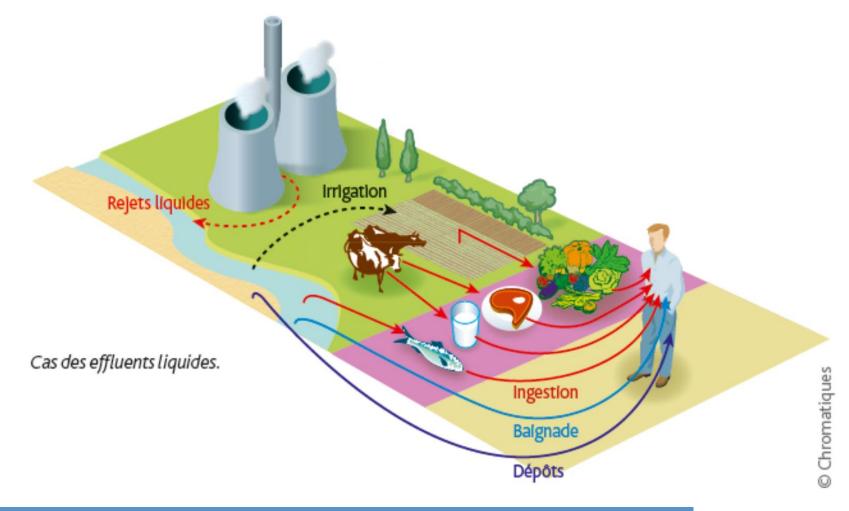
Côté mesures

- 7 Des dizaines d'années de mesures disponibles :
 - Différents types de matrices (herbes, aliments, air, ...)



Pour chacun des sites nucléarisés

Besoin de rationaliser les moyens de surveillance

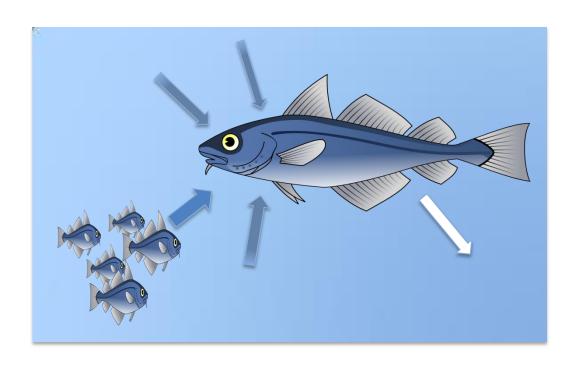

Un peu de théorie

Evaluation d'impact?

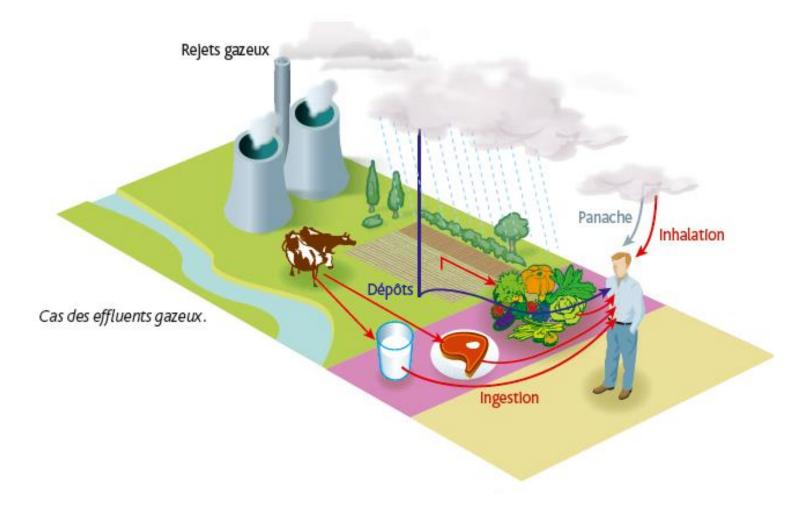
Evaluation du niveau Utilisation d'un outil ou Situation d'exposition ou du d'une méthode de calcul d'exposition dimensionnement d'une protection Tchernobyl **Fukushima** Expertises spécifiques Screening (modèles dit flexibles) **Expertises** simples

Transfert à l'environnement - rejets liquides

Transferts - rejets liquides


- 7 Composantes de l'environnement impactées
 - Cours d'eau, mers et océans, sources, nappes ...
 - Denrées animales vivant dans le cours d'eau
 - Végétations irriguées par le cours d'eau
 - Eaux potables (issues des cours d'eau)
 - Animaux qui ingèrent cette eau ou cette végétation
 - → Donc alimentation

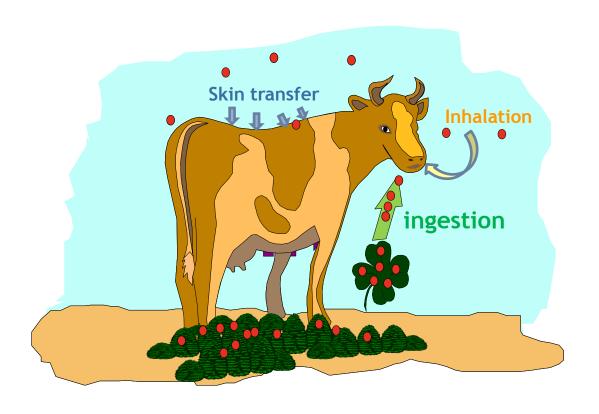
Transferts - rejets liquides


7 Facteurs de transferts

- Eau → poissons
- Eau → algues
- Eau → sol
- Sol → herbe
- I Herbe → vache
- Vache → lait
- •••

Transferts à l'environnement - rejets gazeux

Transferts - rejets gazeux


- 7 Composantes de l'environnement impactées
 - Air
 - Pluie
 - Sol, végétation (via dépôt sec et précipitations)
 - Cours d'eau via dépôt et ruissellement
 - Animaux
 - → Donc alimentation

Transferts des rejets gazeux

7 Facteurs de transferts

- Air → pluie
- Pluie → sol
- Sol → végétation
- Végétation → vache
- Vache → lait
- •••

Surveillance de l'environnement

Surveillance de l'environnement

Compartiment atmosphérique

Débit de dose ambiant (Téléray)

Dosimètre environnemental

Aérosols atmosphériques

Collecteur d'eau de pluie

Vapeur d'eau et autres gaz

Compartiment terrestre

Mesure gamma in situ

Sol

Herbes et Légumes-feuilles

Lait

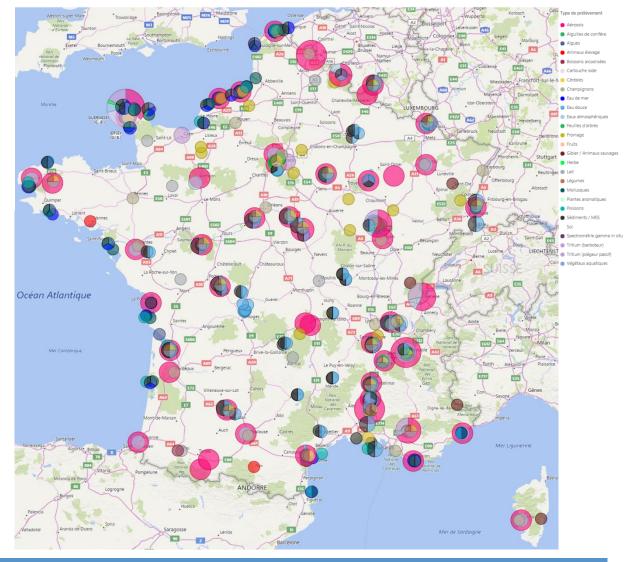
Céréales et autres denrées

Compartiment aquatique

Mesure gamma in situ

Eaux de surface

Matière en suspension ou sédiments


Algues et végétaux aquatiques

Mollusques, poissons

Surveillance de l'environnement

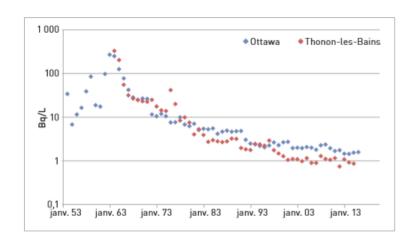
Surveillance de l'environnement

En 2018:

- Environ 4500 prélèvements
- Plus de 6000 analyses
- Plus de 20 millions de mesures in-situ (débit de dose gamma ambiant notamment)

Comment associer modèles et mesures ?

Mesures → Modèles


Ce que les mesures peuvent apporter aux modèles

- Les mesures sont très précises
 - Coordonnées exactes
 - Mesures en laboratoire fiables
- Les mesures sont « vraies »
 - Pas d'oubli de paramètres
- On peut (presque) tout mesurer
 - Toutes les matrices (eau, faune, flore, air,...)
 - Tous les RN (beaucoup de techniques d'analyses)
- Mais attention, il y a des limites!

Les limites

- 7 Les limites de l'apport du prélèvement et de la mesure
 - Le temps et l'espace (on ne peut pas mesurer partout tout le temps)
 - Les incertitudes liées au prélèvement et à la mesure
 - La diminution des niveaux environnementaux

De la mesure au calcul d'impact

Du rejet en milieu aquatique à l'activité dans l'environnement (exemple de La Hague)

Constat:

Présence d'Am 241 et de Cs 137 dans une zone de bocage autour du site de la Hague (orano)

Mesure sur des échantillons :

Prise et analyse d'échantillons, de sol, d'herbe ...

Evaluation d'impact :

Sur la base des activités mesurées et en intégrant des paramètres dosimétriques et alimentaires

IRSN/SIRSE IRSN/SEREN

Recaler un modèle

7 Où vont les rejets atmosphériques ? (cas du 85Kr à La Hague)

Modèles

 Utilisation des modèles en limite de validité (orographie complexe, distances des points de calculs ...)

Mesures

 Mesure de l'activité de Kr 85 et évaluation des CTA correspondant

Constats

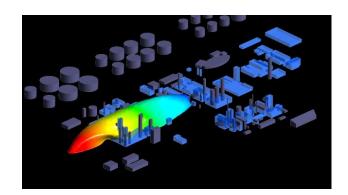
- Sous-estimation des CTA par les modèles utilisés
- Nécessité d'améliorer les modèles pour arriver à une modélisation « plus juste ».

IRSN/SIRSE IRSN/SEREN IRSN/STRE ORANO

Comment associer modèles et mesures ?

Modèles → Mesures

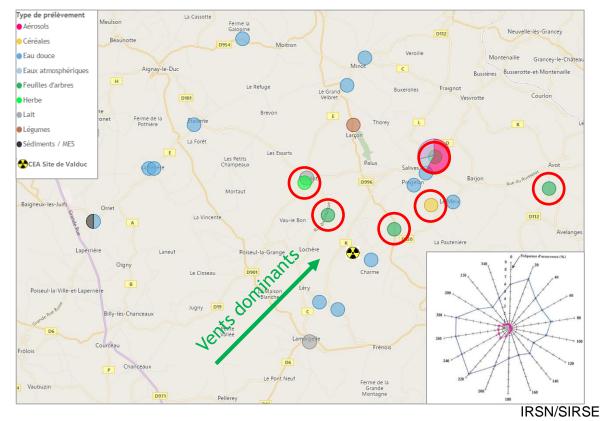
Ce qu'apportent les modèles aux mesures


- Les possibilités sont « presque » illimitées en terme de couple radionucléide / composante de l'environnement (dans les limites définies du modèle)
- Le résultat d'un modèle est beaucoup moins couteux et beaucoup plus rapide (dépendamment au modèle)
- Les paramètres peuvent être simples à changer
- Mais attention, comme pour les mesures, il y a des limites!

Les limites

Zes limites des modèles

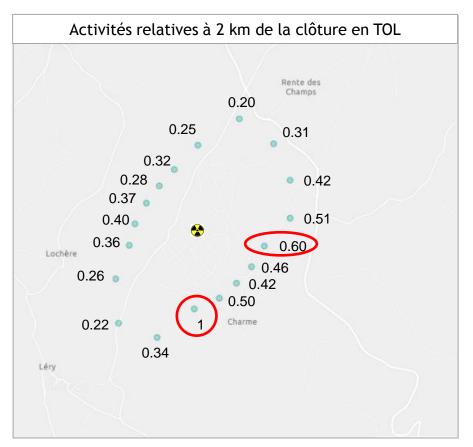
- Paramètres de transferts entre deux compartiments disponibles sont limités => approximations dans les calculs
- Dépendent uniquement des limites des paramètres (transferts, dépôts, dose ...)
- Passage des modèles expérimentaux dédiés à la recherche aux applications liées à l'expertise.



Vérifier le positionnement des points de surveillance

↗ Exemple sur le site CEA de Valduc

- 27 points de prélèvements suivis par l'IRSN (principalement des prélèvements d'eaux)
- Environ 60 prélèvements par an



Vérifier le positionnement des points de surveillance

↗ Exemple sur le site CEA de Valduc

- Environ 2 fois plus activité au nord-est qu'au sud-ouest
- Activités les plus élevées au sud et sud-est

Vérifier le positionnement des points de surveillance

7 Exemple sur le site CEA de Valduc

IRSN/SEREN

Etude de site

Comparaison Modèle - Mesure

- Confronter les résultats des modèles avec les mesures issues des études de terrain
- Premiers résultats : bonne correspondance entre les mesures et les valeurs calculées pour les activités volumique dans l'air

Comparaison Modèle - Modèle

- Modéliser les transferts jusqu'à l'impact aux personnes en utilisant différents outils de calcul.
- Etudier les paramètres
- Situer les réponses des modèles les unes par rapport aux autres.

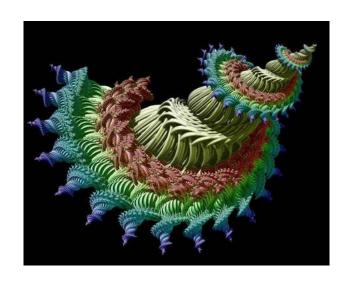
Orienter les stratégies d'échantillonnage, d'acquisition et d'exploitation des données

- Positionnement des appareils/ stratégie de mesure
- Représentativité de certaine mesures
- Choix des appareils en fonction de leurs caractéristiques métrologiques et des niveaux d'activités attendus

Modèle - Mesure : résultats préliminaires

尽 CNPE Cruas Meysse - Mesures AS1 avec EDF

Activité volumique dans l'air		³ H-HTO	14 C		586	⁶⁰ Co	¹³⁷ Cs
Bq/m³			CO ₂	CH ₄	⁵⁸ Co	300	13/CS
SYMBIOSE	Mesures de vents 2015- 2016 à 10m	1,3.10-2	1,2.10-3	4.9.10-3	4,8.10-8	2,6.10-8	1,7.10-8
CONDOR	Rose des vents 2015-2016	4,4.10-2	4,0.10-3	1,6.10-2	1,6.10 ⁻⁷	8,7.10-8	5,8.10-8
Mesures	Etude mai 2015 à mai 2016 (moy des activités >SD)	5,2.10 ⁻²	1,7.10 ⁻²	3,1.10 ⁻²	3,2.10-7	1,2.10 ⁻⁷	2,1.10 ⁻⁷


- (1) Activité mesurée bdf = 0,062-0,01
- (2) Activité mesurée bdf = 0,064-0,0469
- (3) Activité mesurée bdf = 0,031-0,0002
- (4) Activité mesurée ≈ bdf = 0,41 μBq/m3

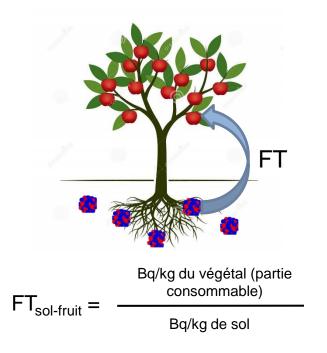
IRSN/SEREN

Comment associer modèles et mesures ?

Mesures → Modèles → Mesures → Modèles...

Itération modèles -> mesures...

Exemple d'un site « marqué »

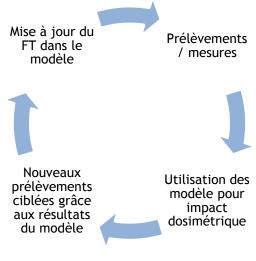

- En 2016, en réponse à l'autorité locale, l'IRSN effectue des prélèvements/mesures des sols sur une parcelle potentiellement marquée en radionucléides naturels
- → Mesures de débits d'équivalent de dose comprises entre 100 nSv/h et 1 µSv/h
- → Activités en ²³⁵U et en ²²⁶Ra dans <u>les sols</u> anormalement élevés
- L'IRSN réalise une évaluation dosimétrique grâce à ces résultats

Itération modèles -> mesures...

Exemple d'un site « marqué »

Exposition en mSv/an	Moyenne	Maximale	
Exposition externe	5,01.10 ⁻¹	8,47.10-1	
Exposition interne par inhalation de poussières	1,11.10 ⁻³	1,29.10-3	
Exposition interne par ingestion de végétaux (potager)	5,34.10 ⁻³	8,44.10 ⁻³	
Exposition interne par ingestion de végétaux (verger)	3,62	3,88	
Exposition interne par ingestion d'aliments d'origine animale	4,61.10 ⁻⁶	5,66.10 ⁻⁶	
Exposition interne par ingestion par inadvertance de sol	1,64.10 ⁻²	1,79.10-2	
Total	4,14	4,75	

→ Consommation de fruits = principale voie d'exposition, sur la base d'hypothèses sur les facteurs de transfert racinaire (fruits non disponibles au moment des prélèvements)

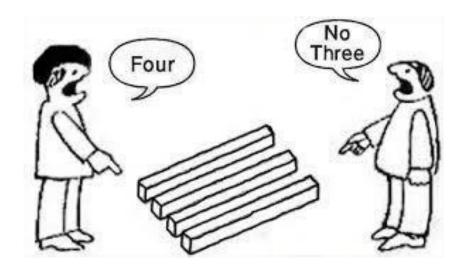


IRSN/SEREN

Itération modèles -> mesures...

- Exemple d'un site « marqué »
 - En 2017, réalisation des prélèvements sur les fruits de la parcelle afin de confirmer les activités calculées dans le cadre de l'évaluation de dose

Mise à jour des facteurs de transfert déterminés grâce aux mesures sur les sols et les fruits



IRSN/SIRSE IRSN/SEREN

Les perspectives

Et maintenant!

Les perspectives

- Mieux prendre en compte les besoins en données des modèles dans la planification de la surveillance
- Qualifier les modèles et leurs utilisations (partenariat fort entre les mesures, les développeurs de modèles et les utilisateurs de ces modèles)
- Améliorer la qualité des modèles en améliorant les bases de données de paramètres de transfert entre compartiments qui y sont utilisés et par conséquent notre maîtrise des résultats
- Rationnaliser les prélèvements pour la surveillance en ciblant mieux les points intéressants

Merci de votre attention

<u>Projet DIFLU</u> (Pilotage P. Laguionie): qualification des modèles en champ proche (<100 m) et milieu urbain

Etude de site Saint Alban (pilotage L. Saey)

Projet MEMOREX (pilotage L. Pourcelot):
Comportement du Cs 137 dans les pâturages français