

EVOLUTION RECENTE DES MODELES DE DOSIMETRIE INTERNE

Eric Blanchardon SFRP tutoriale T1 - Tours - 21 juin 2011

E. Blanchardon SFRP 2011 (Tours) 2/70

IRSN

Modèles biocinétiques

E. Blanchardon SFRP 2011 (Tours) 3/70

Modèle alimentaire

Le modèle précédent (CIPR 30, 1979)

Limites du modèle

compartiments et voies de transfert manquants :

- absorption par la bouche, l'estomac
- rétention sur les dents, la paroi de l'intestin
- sécrétion à partir d'autres compartiments
- dose à l'œsophage et au colon $(w_T$ dans la CIPR 60)

Nouvelles données

sur les temps de transit, en fonction de l'âge sur la localisation des cellules radiosensibles

IRSI

E. Blanchardon SFRP 2011 (Tours) 5/70

Nouveau modèle alimentaire humain (CIPR 100, 2006)

E. Blanchardon SFRP 2011 (Tours) 6/70

Temps de transit

 > dépendant de l'âge > du sexe > pour les solides, les liquides et l'ensemble 					adul	lte : ense	emble	
bouche	œso	ohage		estomac	IG	CD	CG	RS
	rapide (90%)	lent (10%)						
10		40	homme	70 m	4 h	12 h	12 h	12 h
12 S	/ S	40 S	femme	95 m	4 h	16 h	16 h	16 h

> absorption locale : $\lambda_{i,san}$

$$_{ig} = \frac{f_i \lambda_{i,i+1}}{1 - \sum_{1}^{i} f_k}$$

E. Blanchardon SFRP 2011 (Tours) 7/70

IRSN

Voies de sécrétion

E. Blanchardon SFRP 2011 (Tours) 8/70

IRSN

Modèle respiratoire

Modèle respiratoire humain (publication CIPR 66, 1994)

E. Blanchardon SFRP 2011 (Tours) 10/70 Epuration du dépôt extra-thoracique

JRH Smith & G Etherington, 2008

E. Blanchardon SFRP 2011 (Tours) 11/70

Epuration lente dans les bronches

E. Blanchardon SFRP 2011 (Tours) 12/70

Région alvéolaire-interstitielle

E. Blanchardon SFRP 2011 (Tours) 13/70

Absorption vers le sang

CIPR 66 (1994)

f_b et s_b indépendants du composé et identiques dans toutes régions

E. Blanchardon SFRP 2011 (Tours) 14/70

Paramètres de dissolution

Туре		F(fast)	M (moderate)	S (slow)
fraction rapidement dissoute	$f_{\rm r}$	1	0,1	0,001
taux de dissolution :				
rapide (j ⁻¹)	s _r	100	100	100
lente (j ⁻¹)	s _s	-	0,005	0,0001

Stradling et al. 2003

IRSN

	paramè	tres d'abso	rption
particules uraniferes innalees	f _r	<i>s</i> _r (j ⁻¹)	<i>s</i> _s (j ⁻¹)
valeurs spécifiques			
Tri-Butyl-Phosphate (U-TBP) (F)	0,97	12	0,002
nitrate $UO_2(NO_3)_2$ (F)	0,9	3	0,005
hydrate de peroxyde UO_4 (F)	0,9	0,9	0,02
Ammonium ADU (F)	0,8	0,7	0,020
trioxyde UO ₃ (M)	0,8	1	0,01
tetrafluorure UF_4 (M)	0,6	0,15	0,005
octoxyde U_3O_8 (S)	0,04	1	0,0006
dioxyde UO ₂ (S)	0,015	1	0,0005

E. Blanchardon SFRP 2011 (Tours) 15/70

Modèle de plaie contaminée

Rapport NCRP 156 (2006)

Eléments pour lesquelles des données sont disponibles

$\stackrel{1}{\mathrm{H}}$																\mathbf{H}^{1}	He
_{Li}	Be											B	ĉ	Ň	⁸ O	° F	Ne
Na	Mg											13 A1	Si	15 P	16 S	C1	Ar
19 K	Ca ²⁰	21 Sc	Ti ²²	23 V	Cr	Mn ²⁵	Fe	27 Co	Ni	Cu ²⁹	$\frac{30}{Zn}$	Ga 31	32 Ge	As	³⁴ Se	³⁵ Br	Kr ³⁶
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	Mo ⁴²	43 Tc	44 Ru	A5 Rh	⁴⁶ Pd	47 Ag	Cd	49 In	so Sn	Sb Sb	52 Te	53 I	Xe
55 CS	56 Ba	57 La	Hf	73 Ta	74 W	Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	Pb	Bi	⁸⁴ Po	At	⁸⁶ Rn
87 Fr	⁸⁸ Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112		114		116	1	118

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Expérimentation animale (rats, hamsters, lapins, chiens, cochons)

E. Blanchardon SFRP 2011 (Tours) 17/70

IRSN

Caractéristiques du modèle plaie

- structure du modèle NCRP en (au plus) 7 compartiments pour prédire la biocinétique des substances radioactives solubles et non solubles suivant leur spéciation
- spécifique à la forme physico-chimique du composé : soluble, colloïde, particulaire, fragment
- Un composé soluble peut devenir insoluble par hydrolyse et réciproquement.
- transfert depuis la plaie vers le sang (composés soluble) et les ganglions lymphatiques (particules)
- 4 classes de rétention pour les composés solubles : faible, modérée, forte et avide suivant la cinétique de rétention à 1, 16, et 64 jours

E. Blanchardon SFRP 2011 (Tours) 18/70

Composés solubles

• composés initialement en solution aqueuse

 données animales d'injection i.m. de solutions (<5 µg) de 54 radionucléides

• Hydrolyse et complexation déterminent la constante de solubilité et la cinétique de rétention dans la plaie par formation de précipités $M(OH)_n$ ou $ML_n : Mn^+ + nOH^- \rightarrow M(OH)_n$ $K_s = [Mn^+] \times [OH^-]_n$

• critères importants : concentration, solubilité, pH 7.4, présence de ligands biologiques (Cl⁻, HCO3-...)

• En général (pH neutre, faible concentration de solutés), la tendance à l'hydrolyse augmente avec la valence :

$$1^{-} < 1^{+} < 2^{+} < 3^{+} < 4^{+}$$

Log K_s: CsOH < $Ra(OH)_2$ < $Ac(OH)_3$ < $Th(OH)_4$

- approximation de la rétention par R(t) = $\Sigma A_i e^{-\lambda i t}$ avec $A_i = \%$ rétention, λ_i
- = vitesse d'épuration du compartiment i

E. Blanchardon SFRP 2011 (Tours) 19/70

IRSI

Modèle biocinétique générique pour les plaies contaminées

E. Blanchardon SFRP 2011 (Tours) 21/70

Paramètres du modèle par défaut

	coefficient de transfert (j ⁻¹)							
transfert	radionucléides en solution à rétention faible modérée forte avide				colloïdes (injection dans CIS)	particules (injection dans PABS)	fragments (injection dans fragment)	
<u>Soluble</u> \rightarrow <u>Blood</u>	45	45	0,67	7,0	0,5	100	_	
$\underline{Soluble} \rightarrow \underline{CIS}$	20	30	0,6	30	2,5	-	-	
$\underline{\text{CIS}} \rightarrow \underline{\text{Soluble}}$	2,8	0,4	2,4 x 10 ⁻²	0,03	2,5 x 10 ⁻²	-	-	
$\underline{\text{CIS}} \rightarrow \underline{\text{PABS}}$	0,25	6,5 x 10 ⁻²	1.0 x 10 ⁻²	10	5 x 10 ⁻²	-	-	
$\underline{\text{CIS}} \rightarrow \underline{\text{Lymph Nodes}}$	2 x 10 ⁻⁵	2 x 10 ⁻⁵	2 x 10 ⁻⁵	2 x 10 ⁻⁵	2 x 10 ⁻³	-	-	
<u>PABS</u> → <u>Soluble</u>	8 x 10 ⁻²	2 x 10 ⁻²	1,2 x 10 ⁻³	0,005	1,5 x 10 ⁻³	2 x 10 ⁻⁴	0.0	
$\underline{PABS} \rightarrow \underline{Lymph \ Nodes}$	2 x 10 ⁻⁵	2 x 10 ⁻⁵	2 x 10 ⁻⁵	2 x 10 ⁻⁵	4 x 10 ⁻⁴	3,6 x 10⁻³	0,004	
$\underline{PABS} \to \underline{TPA}$	-	-	-	-	-	4 x 10 ⁻²	0,7	
$\underline{TPA} \to \underline{PABS}$	-	-	_	-	-	3,6 x 10 ⁻³	5 x 10 ⁻⁴	
$\frac{\text{Lymph Nodes}}{\text{Blood}} \rightarrow$	-	-	-	-	3 x 10 ⁻²	6 x 10 ⁻⁴	3 x 10 ⁻²	
$\underline{Fragment} \rightarrow \underline{Soluble}$	-	-	-	-	-	-	-	
$\underline{Fragment} \to \underline{PABS}$	-	_	_	-	-	-	8 x 10 ⁻³	

E. Blanchardon SFRP 2011 (Tours) 22/70

IRSN

Rétention dans la plaie

- faible : 0,3 h (55%) ; 2,8 h (40%) ; 7 j (5%)
- modérée : 0,3 h (55%) ; 1,4 j (35%) ; 35 j (10%)
- forte : 17 h (50%) ; 23 j (30%) ; 1,9 a (20%)
- avide : 8,3 h (15%) ; 1,9 a (85%)
- colloïdes : 5,5 h (15%) ; 13 j (8%) ; 2,7 a (77%)
- particules : 14 j (5%) ; 4,7 a (95%)
- fragments : 77 j (0,5%) ; 290 a (99,5%)

Dosimétrie systémique du plutonium

0.0E+00 2.0E+08 4.0E+08 6.0E+08 8.0E+08 1.0E+09 1.2E+09 1.4E+09 1.6E+09 nombre de transformations nucléaires pendant 50 ans

Le coefficient de dose pour l'injection constitue une bonne approximation, excepté pour les fragments.

E. Blanchardon SFRP 2011 (Tours) 24/70

IRSN

Modèles systémiques

Modèle unidirectionnel

Modèle systémique des plutonium, américium et curium recommandé par la publication CIPR 30 (1988)

E. Blanchardon SFRP 2011 (Tours) 26/70

Modèle recyclant

Structure du modèle appliqué par la publication CIPR 72 (1996) aux thorium, neptunium, plutonium, américium et curium

E. Blanchardon SFRP 2011 (Tours) 27/70

Biocinétique du plutonium

Leggett et al. 2005

E. Blanchardon SFRP 2011 (Tours) 28/70

Biocinétique du plutonium

Leggett et al. 2005

E. Blanchardon SFRP 2011 (Tours) 29/70

Biocinétique du plutonium

Leggett et al. 2005

E. Blanchardon SFRP 2011 (Tours) 30/70

Biocinétique du polonium

Leggett and Eckerman 2001

E. Blanchardon SFRP 2011 (Tours) 31/70

Biocinétique du césium

E. Blanchardon SFRP 2011 (Tours) 32/70

Biocinétique de l'eau tritiée

corps entier = A + B

élimination ($\frac{1}{2}$ urines, $\frac{1}{2}$ exhalation, selles, sueur)

coefficient de dose e(50) = 1,8 10⁻¹¹ Sv / Bq

E. Blanchardon SFRP 2011 (Tours) 33/70

Biocinétique de l'eau tritiée

corps entier = A + B + C

élimination (1/2 urines, 1/2 exhalation, selles, sueur)

coefficient de dose e(50) = 1,7 10⁻¹¹ Sv / Bq

E. Blanchardon SFRP 2011 (Tours) 34/70

Modèles dosimétriques

SAF: Fraction massique de l'énergie absorbée dans l'organe cible

E. Blanchardon SFRP 2011 (Tours) 36/70

Spectre d'émission

Publication CIPR 107 : Nuclear decay data for dosimetric calculations

Révision de la publication CIPR 38 avec CD et logiciel (2008)

Schémas de décroissance, énergie et rendement des radiations émises pour 1252 radioisotopes (dont 330 périodes < 10 min) de 97 éléments Spectres β, Auger- CK (136) et neutrons (28)

Débit de kerma dans l'air

E. Blanchardon SFRP 2011 (Tours) 37/70

Dosimétrie de référence actuelle

E. Blanchardon SFRP 2011 (Tours) 38/70

Nouveaux fantômes de référence

Publication CIPR 110 (2010) : reference computational phantoms of the adult male and female

représenter l'homme de référence

A partir d'images CT de personnes réelles

Dimensions et densités de 140 organes/tissus ajustées aux valeurs de **la CIPR 89**

Publication papier avec CD

femme 163 cm, 60 kg 3,9 millions de voxels taille de voxel : 15,2 mm³ épaisseur de coupe : 4,84 mm résolution plane : 1,775 mm

homme 176 cm, 73 Kg 1,9 millions de voxels taille de voxel : 36,5 mm³ épaisseur de coupe : 8 mm résolution plane : 2.137 mm

M. Zankl (Helmholtz)

IRSE E. Blanchardon SFRP 2011 (Tours) 39/70

Specific Absorbed Fractions (SAF)

Comparaison entre fantômes voxélisés et fantômes mathématiques ORNL PHOTONS, SAF (Poumons <- Foie), Homme

Specific Absorbed Fractions (SAF)

ELECTRONS, SAF (Poumons <- Poumons), Homme

Fantômes pédiatriques

nouveau-né, 1, 5, 10 et 15 ans hybrides NURBS-voxel

IRSN

E. Blanchardon SFRP 2011 (Tours) 42/70

Cellules cibles des voies respiratoires

Dosimétrie des rayonnements de faible portée émis dans le poumon

E. Blanchardon SFRP 2011 (Tours) 44/70

alvéoles - interstitium

E. Blanchardon SFRP 2011 (Tours) 45/70

IRSN

Dosimétrie du tractus alimentaire

Régions tubulaires du tractus alimentaire

✓ villosités négligées dans l'intestin grêle

 ✓ mucus à la surface de la lumière négligé

 ✓ cellules cibles représentées par une couche continue à une profondeur définie

E. Blanchardon SFRP 2011 (Tours) 47/70

Régions tubulaires du tractus alimentaire

E. Blanchardon SFRP 2011 (Tours) 48/70

Dimensions (cm)

adulte, homme	diamètre	longueur*
œsophage (rapide)	1	28
intestin grêle	3	280
colon droit	6	34
colon gauche	4	38
recto-sigmoïde	3	38

estomac = sphère de volume 175 cm³, rayon 3,5 cm

* idem homme de référence

Cellules cibles	profondeur (µm)	masse (g)
bouche œsophage estomac	190 – 200 190 – 200 60 – 100	0,3 0,09 0,6
colon droit	130 – 150 280 – 300	5,3 1,3
recto-sigmoïde	280 – 300 280 – 300	1,0 0,7

E. Blanchardon SFRP 2011 (Tours) 49/70

IRSN

Comparaison CIPR 100 (HAT) / CIPR 30 pour l'estomac

Comparaison CIPR 100 / CIPR 30 : colon droit vs. ULI

Cellules cibles du tractus alimentaire

Cellules radiosensibles du squelette

Cellules cibles pour l'induction de cancers osseux réparties sur une couche de 50 μ m (au lieu de 10 μ m dans la publication CIPR 30) à partir de la surface

de l'os trabéculaire des cavités médullaires de l'os cortical, hors système Haversien

Cellules cibles pour l'induction de leucémies sont dans toute la moelle rouge de l'os spongieux

E. Blanchardon SFRP 2011 (Tours) 53/70

Régions sources et cibles

E. Blanchardon SFRP 2011 (Tours) 54/70

IRSN

Modèles voxélisés du squelette

série de publications par l'équipe de W.E. Bolch

E. Blanchardon SFRP 2011 (Tours) 55/70

Fonctions de réponse de la fluence à la dose

$$\frac{D(T)}{\Psi(E)} = \frac{1}{m(T)} \sum_{r} m(r) \sum_{i} \int_{0}^{\infty} \phi(T \leftarrow r; E_{i}^{E}) (i/\rho)_{r} n_{r}(E_{i}^{E}) E_{i}^{E} dE_{i}^{E}$$

E. Blanchardon SFRP 2011 (Tours) 56/70

Dosimétrie des rayonnements de faible portée émis dans le squelette

SAF (moelle rouge ← volume de l'os cortical), électrons

Cas particulier du radon

Publication CIPR 65

Protection against radon-222 at home and at work

approches dosimétrique et épidémiologique

(38) Although there are uncertainties in both above approaches, they do not lead to widely different results. The Commission has concluded that the use of the epidemiology of radon in mines is more direct, and therefore involves less uncertainty and is more appropriate for the purposes of this report than the indirect use of the epidemiology of low LET radiation from the Japanese data. The Commission therefore recommends that the dosimetric model should not be used for the assessment and control of radon exposures. The fatality coefficients in this report are therefore based

note : l'unité historique d'exposition au radon dans les mines est le working level month (WLM) = 3,5 10⁻³ J h m⁻³ d'énergie alpha potentielle des descendants du radon

E. Blanchardon SFRP 2011 (Tours) 59/70

Convention de conversion

La convention de conversion en dose de la publication CIPR 65 (1993)

compare le risque de cancer du poumon chez les mineurs

2,83 x 10⁻⁴ par WLM

au **détriment total** du aux cancers et effets héréditaires de la publication CIPR 60 (1991):

Travailleurs 5,6 x 10⁻² par Sv => 5 mSv par WLM

Public 7,3 x 10^{-2} par Sv => 4 mSv par WLM

E. Blanchardon SFRP 2011 (Tours) 60/70

International Commission on Radiological Protection Statement on Radon

Approved by the Commission in November 2009

(3) Following from the 2007 Recommendations, the Commission will publish revised dose coefficients for the inhalation and ingestion of radionuclides. The Commission now proposes that the same approach be applied to intakes of radon and progeny as that applied to other radionuclides, using reference biokinetic and dosimetric models. Dose coefficients will be given for different reference conditions of domestic and occupational exposure, taking into account factors including inhaled aerosol characteristics and disequilibrium between radon and its progeny. Sufficient information will be given to allow specific calculations to be performed in a range of situations. Dose coefficients for radon and progeny will replace the Publication 65 dose conversion convention which is based on nominal values of radiation detriment derived from epidemiological studies comparing risks from radon and external radiation. The current dose conversion values may continue to be used until dose coefficients are available. The Commission advises that the change is likely to result in an increase in effective dose per unit exposure of around a factor of two.

E. Blanchardon SFRP 2011 (Tours) 61/70

Chaîne de décroissance du radon

gaz radon		²²² Rn	3,8 j
		$\downarrow \alpha$	
	polonium	²¹⁸ Po	3 min
descendants		$\downarrow \alpha$	
a vie courte	plomb	²¹⁴ Pb	27 min
		↓ β , γ	
	bismuth	²¹⁴ Bi	20 min
		↓ β,γ	
		²¹⁴ Po	160 μs
		α	
		²¹⁰ Pb	22 ans
	E. Blanchardo	n SFRP 2011 (Tours) 6	52/70 IRSN

Gaz radon ⇔ descendants

facteur d'équilibre F

F=1		F=0,3	
nucléide	Bq m⁻³	nucléide	Bq m⁻³
²²² Rn gaz	1,0	²²² Rn gaz	1,0
²¹⁸ Po	1,0	²¹⁸ Po	0,6
²¹⁴ Pb	1,0	²¹⁴ Pb	0,3
²¹⁴ Bi	1,0	²¹⁴ Bi	0.2

Distribution en taille

Dépôt dans les voies respiratoires

E. Blanchardon SFRP 2011 (Tours) 66/70

Dépôt des descendants du radon (%)

région	libre (100%)	attaché (100%)
ET1	43	5
ET2	43	6
BB	7,4	0,6
bb	5,9	2,2
AI	0,17	10

E. Blanchardon SFRP 2011 (Tours) 67/70

Coefficients de dose

Valeurs de dose efficace publiées hors CIPR s'appuyant sur la structure du modèle CIPR 66

publication	scénario	mSv∙WLM⁻¹	Sv per J∙h·m⁻ ³
Winkler-Heil et al. 2007	mines	11,8	3,3
Marsh and Birchall 2000	domicile	15	4,2
James et al. 2004	mines	20,9	5,9
	domicile	21,1	6,0
Marsh et al. 2005	mines	12,5	3,5
	domicile	12,9	3,6

E. Blanchardon SFRP 2011 (Tours) 68/70

Publications CIPR à venir

Prévues en 2012

- ICRP Publication xxx Internal SAF Values in the Reference Adult Male and Female
 - nouveaux calculs avec les fantômes de la publication CIPR 110
 - contribution au document OIR
- ICRP Publication xxx Occupational Intakes of Radionuclides (OIR part 1 et 2)
 - mise à jour des publications 30 et 78 pour 30 à 40 éléments
- ICRP Publication xxx Paediatric Reference Computational Phantoms
 - fantômes pour nourrisson, 1 an, 5 ans, 10 ans, 15 ans, garçon et fille
- ICRP Publication xxx Foetal and Pregnant Female Reference Computational Phantoms
 - fantômes pour la femme enceinte à 8, 10, 15, 20, 25, 30, et 35 semaines

E. Blanchardon SFRP 2011 (Tours) 69/70

Publications CIPR à venir

Prévues à partir de 2013

- ICRP Publication xxx Occupational Intakes of Radionuclides (Part 3)
 - mise à jour des publications 30 et 78 pour un second jeu d'éléments
- ICRP Publication xxx Occupational Intakes of Radionuclides (Part 4)
 - mise à jour des publications 30 et 78 pour le reste des éléments
- ICRP Publication xxx Internal SAF Values for Foetus, Pregnant Female, and Children
 - contribution à la dosimétrie interne du public
- ICRP Publication xxx Public Exposures to Radionuclides via Inhalation and Ingestion
 - révision complète des publications CIPR 56, 67, 69, 71, et 72
- ICRP Publication xxx Doses to the Embryo, Foetus, and Nursing Infant
 - révision complète des publications CIPR 88 et 95
- ICRP Publication xxx Radionuclides in Wounds
 - guide pour l'utilisation du rapport NCRP 156 (modèle plaie)