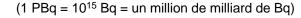


Tritium: comportement dans l'environnement et effets potentiels sur l'homme

L. Lebaron-Jacobs, Ph. Renaud

Congrès de la Société Française de Radioprotection

Angers 15 - 18 juin 2009


Le tritium

Le Tritium est un des trois isotopes de l'hydrogène

PROTIUM ¹H (hydrogène) 99,98 % stable
DEUTÉRIUM ²H ou D 0.02 % stable
TRITIUM ³H ou T 1 ³H cosmogénique pour 10¹⁸ ¹H radioactif (définition de l'UT)

Émetteur β- de faible énergie : 18 keV (137Cs : 662 keV)

Période radioactive : 12,43 ans

Le tritium

Le Tritium est un des trois isotopes de l'hydrogène

L'hydrogène est un constituant de l'eau (H2O)

L'hydrogène est un constituant majeur de la matière organique (CHONP)

Le tritium

Le Tritium est un des trois isotopes de l'hydrogène

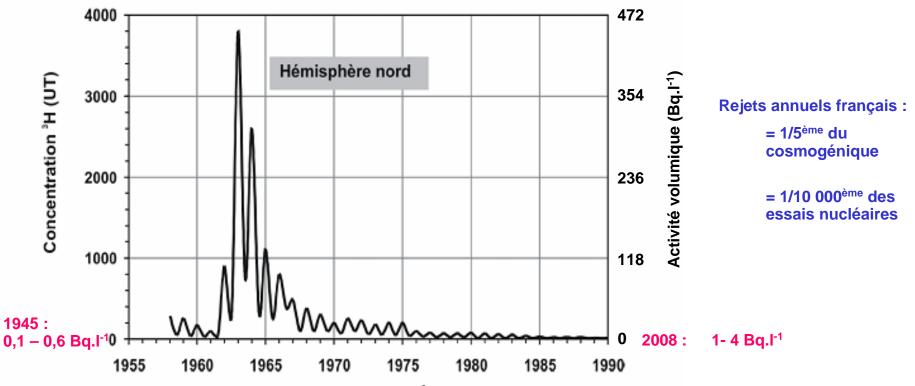
L'hydrogène est un constituant de l'eau (H2O)

l'eau tritiée (HTO) ou « tritium libre », en anglais « TFWT pour Tissue Free Water Tritium »

L'hydrogène est un constituant majeur de la matière organique (CHONP)

La matière organique tritiée ou « tritium lié » en anglais « OBT pour Organically Bound Tritium », ou « TBT pour Tissue-Bound-Tritium »

Une partie de ce tritium « lié » à la matière organique peut « passer » facilement dans — l'eau, il est dit « échangeable » ; il est souvent assimilé au tritium libre, L'appellation de « tritium liée, OBT » est alors réservée à la fraction « non échangeable »


Origine et évolution du tritium atmosphérique depuis 1945

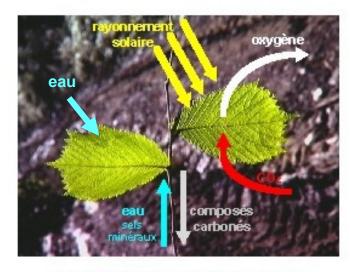
- Origine naturelle : Action des rayonnements cosmiques sur l'azote, l'oxygène et l'argon de l'air ⇒ 74 PBq/an
- Origine artificielle :

Explosions nucléaires atmosphériques Industrie nucléaire civile et militaire

⇒ 186 000 PBq (1954-1963)

⇒ 14 PBq/an (actuellement)

Courbe lissée représentant la teneur moyenne en ³H des précipitations au-dessus de la surface continentale de l'hémisphère Nord. Source = AIEA Isotope hydrology, 2006



Tritium dans le système atmosphère-sol-plante... Respiration CH₃T Diffusion de でする $\mathbf{HTO}_{\text{ vapeur}}$ Diffusion de **Photosynthèse HT**_{vapeur} Échange нто HTO liquide Pluie Échange Dépôt Dépôt OBT Irrigation Évaporation HT **HTO** Dilution H₂O **Absorption** racinaire **Diffusion** Écoulement Oxydation Micro-organismes **HTO** ? Humification OBT

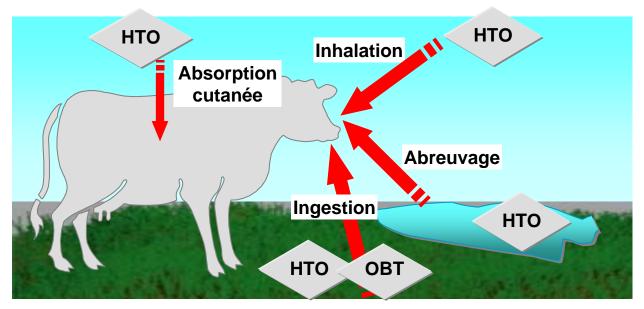
Le tritium dans les végétaux

Quelle est l'activité en tritium d'une plante ?

PHOTOSYNTHESE

$$6 \left[Co_2 + H_2O \right] \rightarrow C_6H_{12}O_6 + 6O_2$$

lumière


Aujourd'hui 1 ³H pour 10^{17 1}H

- Quelle son activité en HTO ?
 - Quelle est l'activité de HTO dans l'air actuellement ?

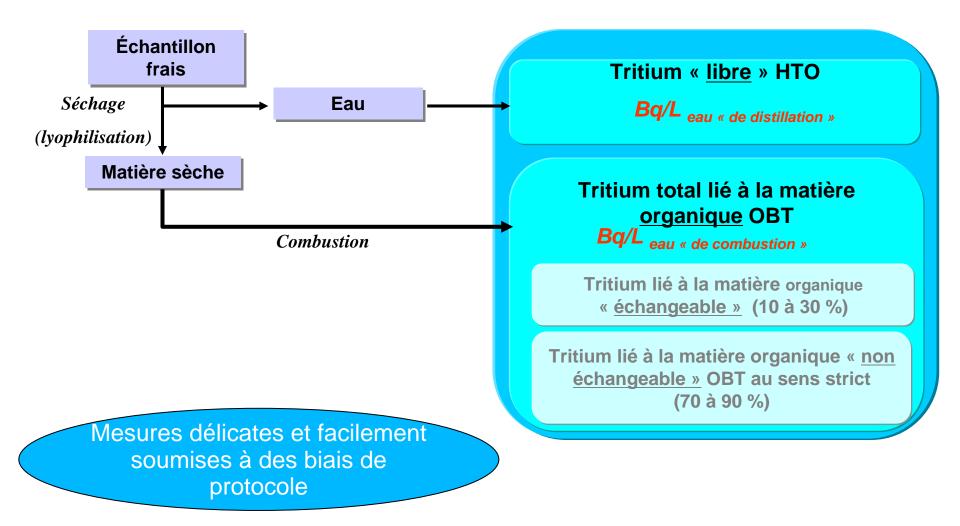
- Quelle est son activité en OBT ?
 - Quelle était l'activité moyenne de HTO dans l'air lorsqu'elle a poussé?

Le tritium dans les animaux

Incorporation de HTO

- La majeure partie (près de 100%) du HTO incorporé, est assimilée rapidement et transférée à l'ensemble de l'organisme,
- Une petite fraction (1%) du HTO assimilé se lie à la matière organique (devient OBT)

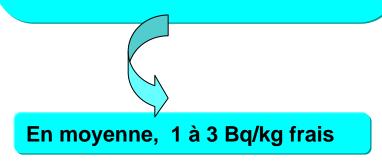
Ingestion d'OBT


- La fraction de l'OBT ingérée qui est assimilée, l'est sous la forme d'eau tritiée (après oxydation) ou de petites molécules organiques
- Quelques % (4%) de l'OBT assimilé reste incorporée à la matière organique

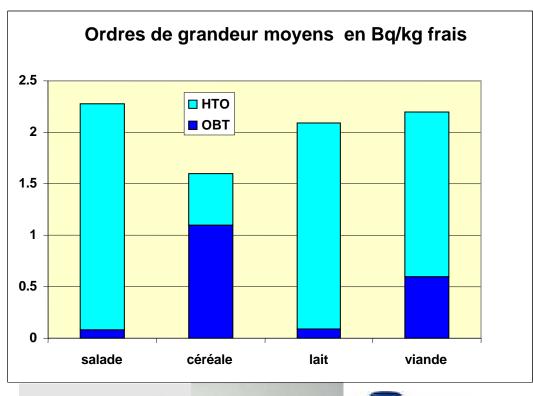
Élimination HTO + OBT

- 97% de (OBT+HTO) est éliminé avec une période de quelques jours : urine, fèces, vapeur d'eau exhalée et transpirée
- 3% avec une période de quelques dizaines à quelques centaines de jours

Mesure du tritium

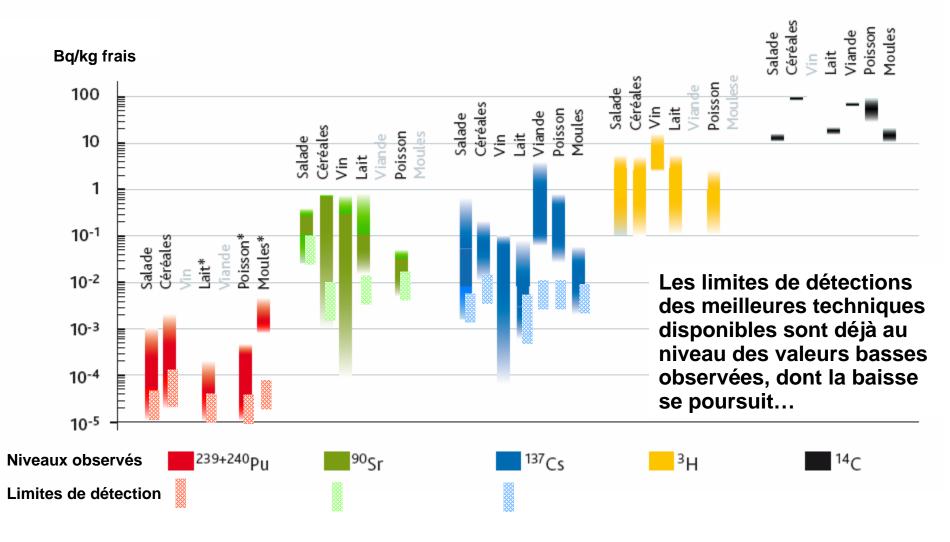


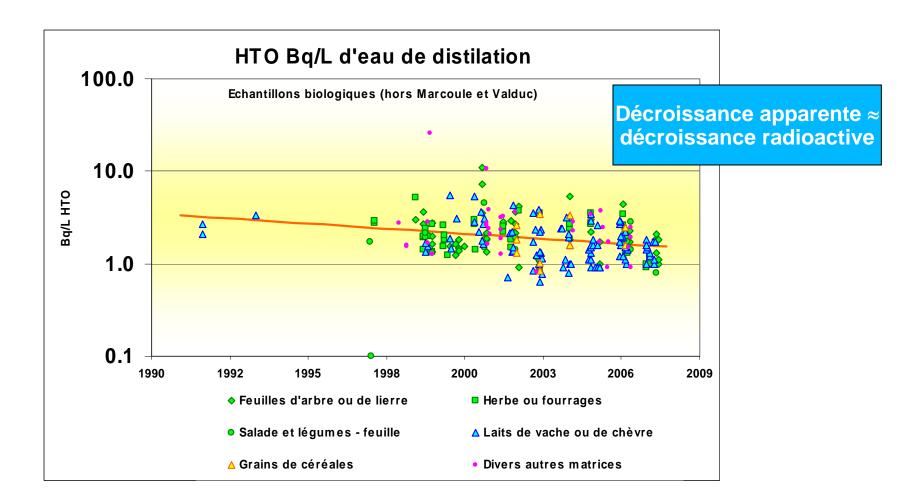
Tritium en « Bq/kg frais « dans les denrées terrestres


Concentrations en HTO et OBT

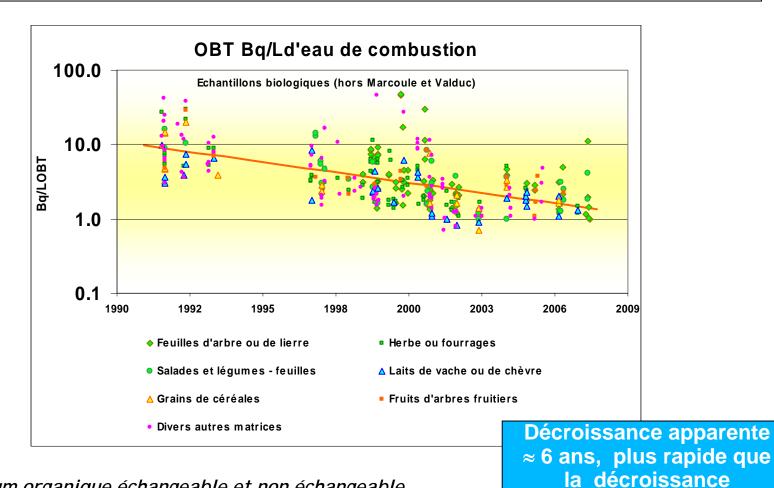
de l'ordre de 1 à 3 Bq/L d'eau de distillation ou de combustion

(bruit de fond, plus sous influence d'une installation nucléaire)


L'activité du tritium exprimée par en Bq/kg frais dépend de la teneur en eau du produit


Comparaison : Niveaux observés /limites de détection dans quelques denrées pour les 5 principaux radionucléides

^{*} Poissons de fleuve ; lait de vache et Moules de méditerranée


Valeurs mesurées dans l'environnement : HTO

Environ 410 échantillons dont 64 % de valeurs supérieures à la limite de détection.

Valeurs mesurées dans l'environnement : OBT *

* Tritium organique échangeable et non échangeable

Environ 375 échantillons dont 90 % de valeurs supérieures à la limite de détection

radioactive

Et en milieu marin?

Idem qu'en milieu terrestre mais avec une activité de l'eau de mer à 0,1 Bq/l proche de 1 UT (bruit de fond cosmogénique)

(la masse d'eau océanique à dilué l'accroissement de l'activité atmosphérique due au essais nucléaires)

80% du tritium présent initialement dans l'air est en mer au bout de 2 ans

85% du tritium présent initialement dans l'air est dans les profondeurs océaniques au bout de 50 ans

Tout ce qui vit dans l'eau est en équilibre avec le milieu

Rapports OBT/HTO dans diverses espèces marines (données IRSN/LRC - EDF/CNPE Flamanville)

Date	Espèce	Lieu	OBT	±	HTO	±	OBT/HTO
16/03/2006	Fucus serratus	Carteret	5.0	2.1	3.9	8.0	1.3
15/03/2006	Fucus serratus	Dielette	12.5	0.9	9.5	1.0	1.3
14/03/2006	Fucus serratus	Goury	12.0	8.0	11.3	1.1	1.1
15/03/2006	Fucus serratus	Sciotot	6.6	1.6	8.1	1.1	0.8
15/03/2006	Fucus vesiculosus	Dielette	11.2	0.9	11.0	1.0	1.0
14/03/2006	Fucus vesiculosus	Goury	12.4	0.8	10.7	1.1	1.2
26/04/2006	Bulot	Flamanville	9.5	0.7	5.1	0.9	1.9
30/03/2006	Patelle	Carteret	4.2	2.0	4.0	0.8	1.1
28/03/2006	Patelle	Dielette	14.2	2.7	17.4	1.2	0.8
27/03/2006	Patelle	Goury	13.1	0.9	16.1	1.3	8.0
23/05/2006	Homard	Cartret	8.3	0.7	10.8	1.0	8.0
26/04/2006	Homard	Flamanville	9.1	8.0	10.1	1.1	0.9
19/06/2006	Plie	Carteret	8.6	0.9	5.8	0.9	1.5
26/04/2006	Sole	Flamanville	13.8	1.5	13.5	1.2	1.0
19/06/2006	Vieille	Carteret	9.7	1.9	6.9	0.9	1.4
26/04/2006	Vieille	Flamanville	13.3	2.0	14.0	1.2	1.0
		Moyenne	10.2		9.9		1.1
		Ecart type	3.1		4.1		0.3

L'activité moyenne HTO et OBT est de 10 Bq.L-1

Le rapport moyen OBT/HTO est de 1,1 ± 0,3

L'activité moyenne de l'eau de mer à la côte est de 10 Bq.L-1 Le FC moyen est de 1

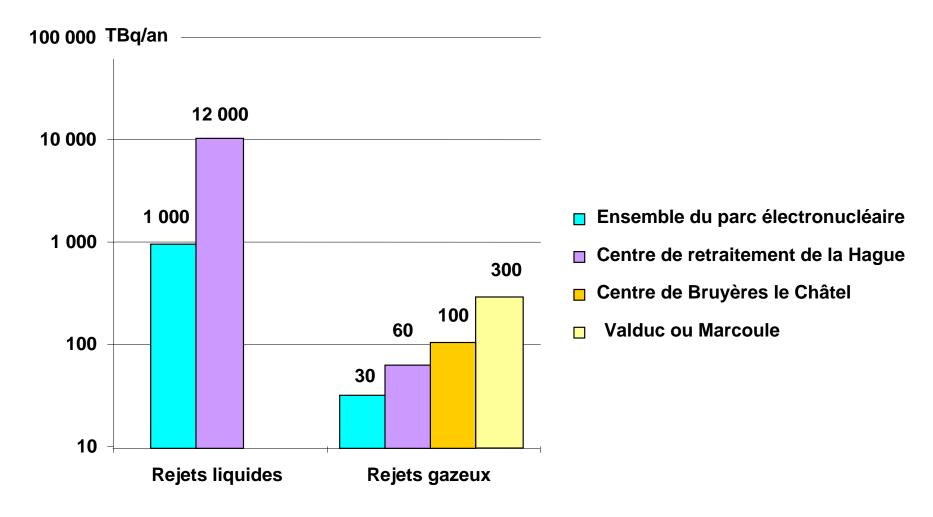
Le tritium est présent à plus de 85 % sous forme libre dans les organismes

Merci de votre attention

Le tritium dans les milieux physiques (air et eau) et dans les végétaux (terrestres ou aquatiques)

- Échanges permaments (³H / ¹H) vers l'équilibre avec des cinétiques rapides (minutes, heures), et variabilité avec de nombreux paramètres agroclimatiques (températures, humidités, saison, jour-nuit...)
- Suit le cycle de l'eau
- Incorporation à la matière organique lors de la photosynthèse
- Un rapport OBT/HTO (Bq/l d'eau de combustion par Bq/l d'eau de desiccation), de l'ordre de 1
- Si déséquilibre OBT/HTO ⇒ Rémanence (litière des sols, cernes des arbres)

Connaissances satisfaisantes (mais pas pléthoriques),


Bonne cohérence entre la compréhension des mécanismes, les modèles déduits et les observations (mesures) faites dans l'environnement

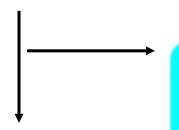
Point faible:

Comportement de l'hydrogène tritiée (HT) et du méthane tritié (CH₃T) : cinétique vers HTO mal connue

Tritium rejeté par l'industrie nucléaire française

Téra-becquerel : 1 TBq = 1×10^{12} Bq (1 000 milliards)

Conclusion


État des connaissances radioécologiques sur le tritium

- Dans l'eau, l'air, le sol et les plantes : une bonne cohérence entre la connaissance des mécanismes et les observations
- Dans les organismes animaux : peu de données au regard de la complexité (nombre de processus impliqués, interactions et variabilité en fonction de l'espèce, de l'âge et des aliments)
- Sur la base des connaissances disponibles et dans les conditions d'activités environnementales "normales" : pas de phénomène identifié comme susceptible d'engendrer à terme une "bio accumulation" significative et aucune mesure en attestant
- Des lacunes sur la présence de molécules marquées de haute activité (uniquement industrie pharmaco-chimique ? Uniquement en milieu aquatique ?), sur leur devenir et donc sur les conséquences en terme « d'accumulation du tritium » (telle que constatée sur certains estuaires et côtes anglaises)
- Des difficultés de métrologie et de représentativité des mesures

L'activité du tritium exprimée par rapport au poids frais dépend de la teneur en eau du produit

Échantillon frais

Eau «de distillation » (= teneur en eau au sens habituel)

Très variable selon le produit : de 0,2 L/kg frais (céréale) à 0,95 L /kg frais (laitue)

Matière sèche

Par rapport au poids sec : en moyenne 0,6 L/kg sec, valeur peu variable par produit et entre produits différents

Par rapport au poids frais : très variable selon l'humidité du produit,

de 0,01 L /kg frais (lait, vin) à 0,5 L/ kg frais (miel, céréales)