

Delard Ph., PCR Médecine Nucléaire; Artus J-C., Chef de Service Médecine Nucléaire; Maisonnas J., stagiaire; CRLC Val d'Aurelle Montpellier; Congrès SFRP Angers 2009

Sommaire

I- Objectifs IV- Résultats

II- Méthodologie V- Interprétation

III- Moyens VI- Conclusion

I- Objectifs

- 1. Satisfaire à la réglementation.
- 2. Pouvoir agir sur les principales sources d'effluents radioactifs.
- 3. Connaître les rejets du CRLC Val d'Aurelle au titre de l'auto surveillance de l'établissement.
- 4. **Réaliser** des prélèvements au niveau des collecteurs partiels des services concernés.
- 5. Apporter un REX (Retour d'EXpérience)

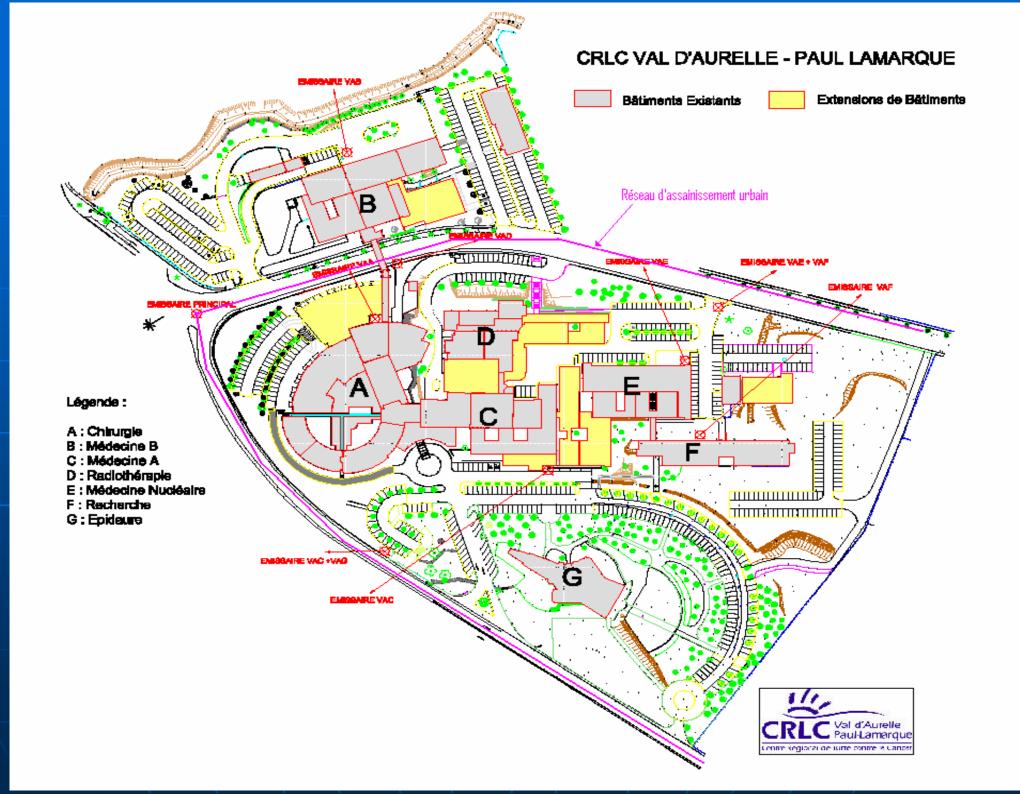
II- Méthodologie

- 1°) Connaître secteur par secteur le réseau d'évacuation
 - topographie
 - accès, pour prélèvements
 - « débits » par secteurs
- 2°) Rapporter l'activité et la cinétique de la source des effluents radioactifs à celle de l'émissaire.
 - urines, fèces
 - salives, sueur, (cas des chambres d'Irathérapie)
- 3°) Optimiser les « sources » des effluents radioactifs

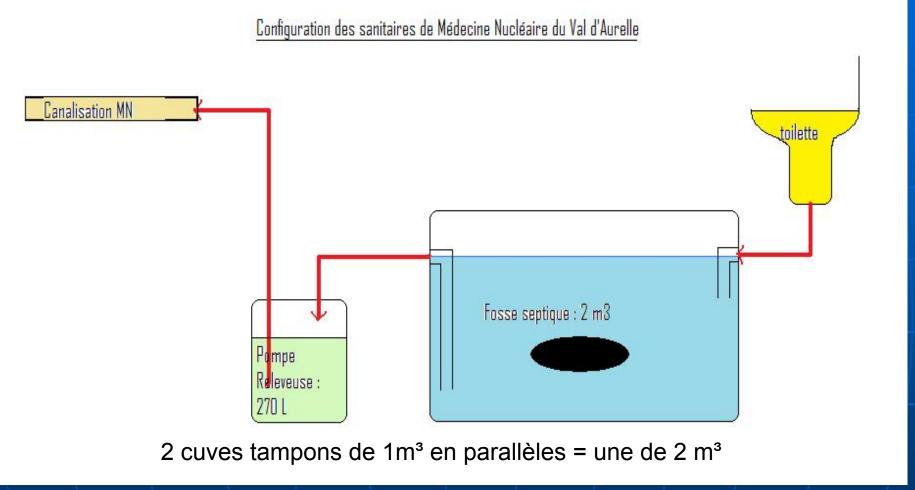
III-Moyens

1) Connaître les émissaires

CRLC → Pas d'émissaire principal


5 lieux de connexion:

- -Médecine Nucléaire + Recherche
- -Radiothérapie
- -Bat A (Hospitalisation, point de restauration)
- -Bat B (Hospitalisation)
- -Chambres d'Irathérapie pas dans le service


3 sources principales de rejets:

- -Médecine Nucléaire
- -Irathérapie
- -Recherche

2) Caractéristiques de la « cuve tampon » de dilution en Médecine Nucléaire

3) Prélèvements : Comment ? Quand? Fréquence ?

- a) Comment : embout adaptable aux tubes de prélèvements
 - → quelque soit la hauteur d'eau
 - → évite une contamination du matériel de prélèvements
 - → rapidité des prélèvements

Tube de prélèvement

3) Prélèvements : Comment ? Quand? Fréquence ?

b) Quand:

- 2 types de prélèvements:
 - ponctuels : vers 12h30 car importance des rejets radioactifs
 - en continu (horaires) : entre 9 h et 17 h les heures ouvrables du Service.

c) Fréquence (à prévoir) :

Trimestriel: prélèvements ponctuels

Annuel: prélèvements continus sur 24 h (?)

4) Comptage

Comptage par spectro-photométrie: radionucléides émetteurs gammas.

échantillon

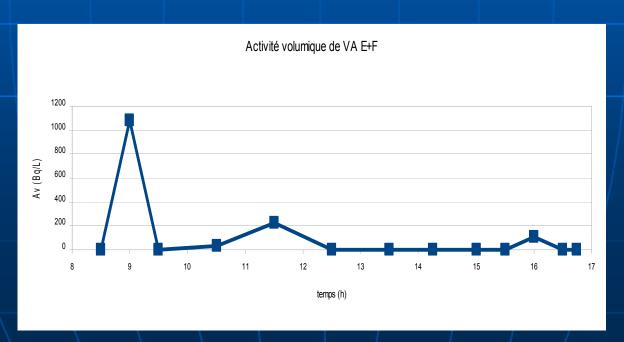
spectrophotomètre

Comptage de 4mL d'effluent (V max) durant 1h → CPM

- → Rendements (observés avec linéarité) :
 - -51,7% pour Tc 99m
 - -8% pour l'Iode 131
- → Limites de détection:

Saturation: + de 5 000 000 CPM \rightarrow 40 MBq/L (pas d'importance)

Seuil: environ 10 à 12 CPM fct (radionucléide)


- \rightarrow soit 80 à 100 Bq/L (99mTc)
- \rightarrow soit 500 Bq/L (¹³¹I)

IV- Résultats

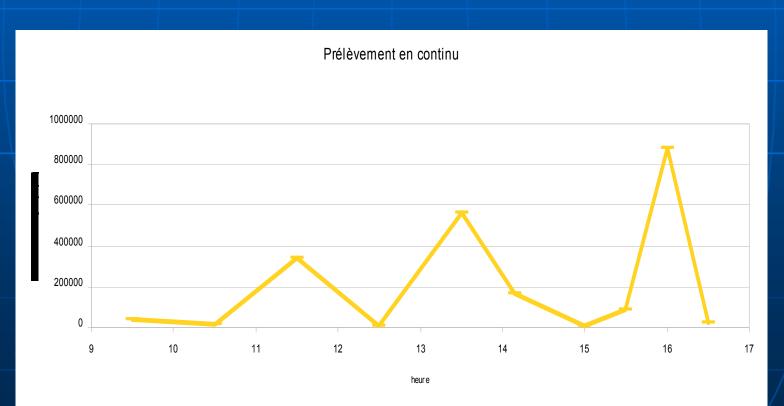
1) Émissaire de Médecine Nucléaire: Tc 99m seul

	Valeurs
	moyennes
Avec système cuves + PR	150 Bq/L
Rejets directs	8 000 Bq/L

* hors cuves de stockage des urines recueillies

2) Émissaire de Chambre Protégée *

Uniquement Iode 131

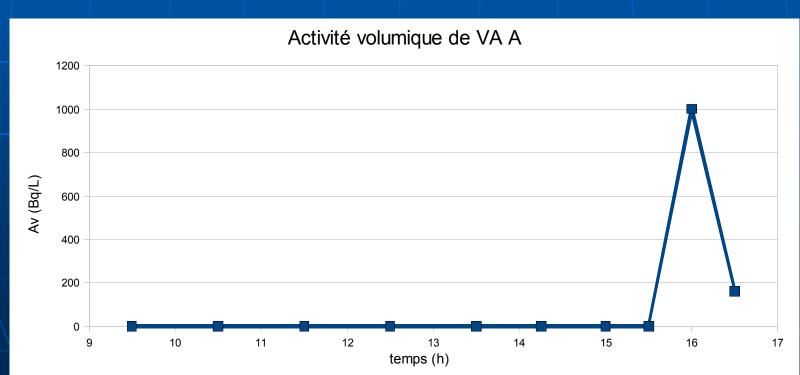

Valeur moyenne prélèvements

50 000 Bq/L

A ramener au débit global!

Eaux usées:

- Lavabo
- Douche
- Matières fécales

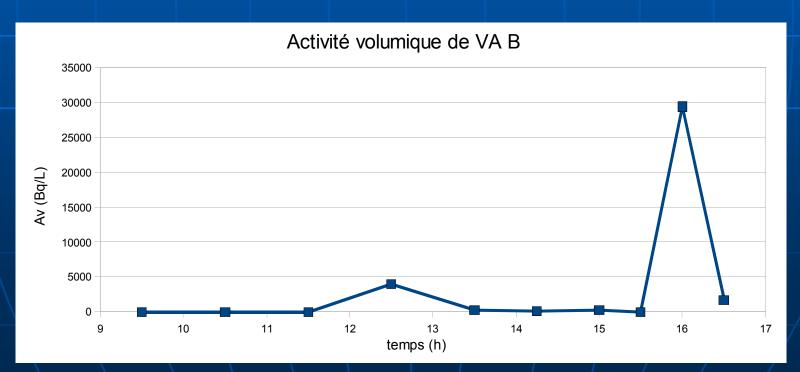

3) Émissaire Bat A, hospitalisation (A) et restauration

-Uniquement du Tc 99m

Valeur moyenne

160 Bq/L

A ramener au débit global!


4) Émissaire Recherche: Absence de radionucléides

<u>5) Émissaire Hospitalisation (B)</u>-Uniquement du Tc 99m

Valeur moyenne

3 500 Bq/L

A ramener au débit global!

V-Interprétation et optimisation

- 1) Médecine Nucléaire en fonctionnement normal
 - → rejets inférieur à 200Bq/L soit 20 000 Bq par jour (source-rejet 1 à 2 GBq par jour pour 11 GBq administrés)
 Efficacité du système de cuve à dilution en accord avec la réglementation
 - → Rejets directs par les patients (WC « froid »):

jusqu'à 100 MBq rejetés directement dans le réseau d'assainissement

comparable au retour du patient à son domicile : Importance des recommandations

2) Chambre d'irathérapie (hors cuves de décroissance):

Valeurs à pondérer sur la consommation totale d'eau sur l'établissement (3/150m³)

Des valeurs excessives du fait que des patients :

- -urinent dans la partie arrière des sanitaires
- -urinent dans la douche
- -salivent ... (brossage de dents : 2 MBq pour 0,1mL de salive)

« Messieurs, merci de bien vouloir uriner assis »

(De façon à utiliser le compartiment antérieur des WC)

« Merci de prendre vos précautions avant de vous doucher »

N'urinez pas dans la douche.

3 & 4) Bâtiments d'hospitalisation et de restauration ...

Des activités parfois importantes ... (émissions d'urines) mais à rapporter à la consommation d'eau du bâtiment concerné.

VI- Conclusion

- Comment diminuer les rejets?
 - Justifier les examens
 - Optimiser la valeur injectée
 - Respecter les NRD, Niveaux de (dose efficace) Référence pour le Diagnostic
- Augmenter le temps de transit des effluents (cuves tampon à urines)
- Un rejet parfois « important », mais pas où on l'attend …
- Les effluents radioactifs les plus importantes : 99m Tc (T1/2 6h)
- Importance de l'information et de la gestion des effluents des patients traités par lode 131 en chambre, toujours à renouveler ...

Remarque générale :

Un *contrôle contraignant* pour la gestion des effluents radioactifs dans l'établissement

La seule information des patients à leur domicile pour limiter les effluents publics