DE LA RECHERCHE À L'INDUSTRIE

DOSEO

Détermination automatique des paramètres du faisceau d'électrons primaires dans les simulations Monte-Carlo d'accélérateurs linéaires en radiothérapie

D. Lazaro, E. Barat, T. Dautremer, T. Montagu, I. Chabert

CEA LIST / DM2I / LM2S – Saclay, France

L. Guérin, A. Batalla

Centre François Baclesse - Caen, France

www.cea.fr

- Méthode d'ajustement automatique des paramètres du faisceau
- Résultats
- Conclusions et perspectives

LES SIMULATIONS MONTE-CARLO D'ACCÉLÉRATEURS LINÉAIRES (LINAC)

- Précision du modèle du linac conditionne directement la précision du calcul de dose en radiothérapie externe
- description précise de la géométrie du linac
- ajustement fin des paramètres du faisceau d'électrons primaires

Etape délicate de la validation du modèle

Paramètres importants

distributions spatiale et en énergie du faisceau d'électrons

LES SIMULATIONS MONTE-CARLO D'ACCÉLÉRATEURS LINÉAIRES (LINAC)

- Précision du modèle du linac conditionne directement la précision du calcul de dose en radiothérapie externe
- description précise de la géométrie du linac
- ajustement fin des paramètres du faisceau d'électrons primaires

Etape délicate de la validation du modèle

Paramètres importants

distributions spatiale et en énergie du faisceau d'électrons

PROCESSUS ESSAI / ERREUR POUR L'AJUSTEMENT DES PARAMÈTRES DU FAISCEAU D'ELECTRONS

list

PROCESSUS ESSAI / ERREUR POUR L'AJUSTEMENT DES PARAMÈTRES DU FAISCEAU D'ELECTRONS

Inconvénients du processus essai / erreur

- Plusieurs semaines de calcul requises, même pour un utilisateur expert des méthodes Monte-Carlo !
- Hypothèses pour faciliter la description du modèle et réduire le nombre de paramètres
 - fonctions décrivant les distributions spatiale et énergétiques simplifiées : symétrie, Gaussienne...
 - Aucun reflet de la réalité physique
- Aucune garantie que la combinaison optimale de paramètres a été identifiée !

OBJECTIFS

Méthode automatique de détermination des paramètres

- \rightarrow gain de temps
- \rightarrow identifier la (les) solution(s) optimale(s)

Moins d'hypothèses sur les distributions spatiale et énergétique

→ prise en compte plus précise des phénomènes physiques Journées « Codes de calcul en radioprotection, radiophysique et dosimétrie » | 25 et 26 mars 2014 | PARIS DE LA RECHERCHE À L'INDUS

Méthode d'ajustement

MÉTHODE D'AJUSTEMENT DES PARAMÈTRES DU FAISCEAU D'ELECTRONS : PRINCIPE

1

BASE DE DONNEES MONTE-CARLC

Distributions de dose 3D calculées pour plusieurs combinaisons énergie / rayon

2

MÉTA-MODÈLE CONTINU

A partir d'une technique de régression non-paramétrique

3

ALGORITHME D'INVERSION

 Résolution du problème inverse posé en déterminant les distributions spatiale et énergétique qui ajustent au mieux les données expérimentales

li/1

DE LA RECHERCHE À L'INDUST

Cea

Méthode d'ajustement

MÉTHODE D'AJUSTEMENT DES PARAMÈTRES DU FAISCEAU D'ELECTRONS : PRINCIPE

1

BASE DE DONNEES MONTE-CARLO

Distributions de dose 3D calculées pour plusieurs combinaisons énergie / rayon

Construction d'un modèle Monte-Carlo du linac

Plan d'expérience numérique

- Faisceau d'électrons
 - ✓ monodirectionnel
 - ✓ mono-énergétique d'énergie E₀
 - distribution spatiale uniforme de tâche focale circulaire (rayon R)
- Simulation d'un champ 30 x 30 cm²
- Simulation d'une grille régulière de combinaisons E₀ / R

E LA RECHERCHE À L'INDUSTRIE

2

Méthode d'ajustement

MÉTHODE D'AJUSTEMENT DES PARAMÈTRES DU FAISCEAU D'ELECTRONS : PRINCIPE

Détermination d'un modèle continu 5D « analytique » à l'aide d'une technique de régression non-paramétrique

- (
- Interpolation entre les points de la grille
- Débruitage de la dose 3D
- Modèle fonctionnel → calcul rapide

MÉTA-MODÈLE CONTINU

A partir d'une technique de régression non-paramétrique

- Extension 5D de l'approche Lazaro et al.*
- Exploitation des corrélations spatiales de dose entre les points de la grille (amélioration du débruitage)

MÉTHODE D'AJUSTEMENT DES PARAMÈTRES DU FAISCEAU D'ELECTRONS : PRINCIPE

Résolution d'une équation intégrale (()

Problème sévèrement mal posé

Méthode d'ajustement

- A priori de régularité (douceur) et de compacité uniquement sur les distributions spatiale et énergétique (approche non paramétrique)
- Résolution par une méthode Monte-Carlo par chaine de Markov (MCMC), exploitation de la rapidité du meta-modèle analytique.
- Obtention d'un *ensemble* de solutions (dans tout l'espace des fonctions de densités de probabilité) → Information sur l'incertitude associée aux distributions estimées (approche bayésienne)

ALGORITHME D'INVERSION

 Résolution du problème inverse posé en déterminant les distributions spatiale et énergétique qui ajustent au mieux les données expérimentales

li/t

3

VALIDATION DE LA MÉTHODE SUR DES DONNÉES SYNTHÉTIQUES

Jeu de données synthétiques

- Distribution spatiale (mélange de loi uniformes) et poly-énergétique (spectre multimodal, mélange de gaussiennes) connues
- Construction des profils et rendements en profondeur synthétiques à partir du méta-modèle - ajout de bruit d'observation

Etablissement du méta-modèle

- Modèle MC du linac SYNERGY / MLCi2 développée avec EGSnrc et validé
- Construction de la base de données : simulation d'un champ 30 x 30 cm², mode photons 6 MV

Jeu de données expérimentales (Centre Léon Bérard)

- Profils latéraux à z = 1,5, 5, 10 et 20 cm
- Rendement en profondeur

Choix des profils de dose pour la résolution du problème inverse

- Sélection du jeu de données expérimentales le plus informatif
 - Pour limiter les mesures
- Décomposition en valeurs singulières (SVD) du meta-modèle : information maximale pour un nombre réduit de profils

 \rightarrow combinaison rendement et profils en haut et bas de cuve (z = 5 et z = 20 cm)

Données compatibles avec les valeurs nominales du constructeur

Journées « Codes de calcul en radioprotection, radiophysique et dosimétrie » 25 et 26 mars 2014 PARIS

Calcul des distributions de dose avec les paramètres estimés

Journées « Codes de calcul en radioprotection, radiophysique et dosimétrie » | 25 et 26 mars 2014 | PARIS

Calcul des distributions de dose avec les paramètres estimés

Résultats

APPLICATION A D'AUTRES LINACS

Sur le même modèle de linac (SYNERGY / MLCi2) – Données AP-HM

Sur un linac ARTISTE Siemens – Données du Centre François Baclesse

- Estimation : E_{mov} = 6,25 MeV, tâche focale de rayon r = 1 mm
- Très bon accord des profils et rendement en profondeur calculés avec cette estimation et les données expérimentales (Gamma-index 1% / 1 mm)

Développement d'une méthode automatisée de détermination des paramètres du faisceau d'électrons

- validation sur des données synthétiques
- validation sur des données réelles

Ajustement des données expérimentales

- sensibilité aux erreurs de modélisation
- prise en compte des incertitudes sur la taille de champ (cf. recalage rigide)
- réponse de la chambre d'ionisation (géométrie, linéarité)

Extension à d'autres paramètres

- tâche focale anisotrope
- modèle étendu à une taille de champ variable
- plan d'expérience de type hypercube latin

MERCI POUR VOTRE ATTENTION

