

Comparaison entre deux approches de dosimétrie personnalisée à l'échelle du voxel pour la radioembolisation à l'90Yttrium


S. Gnesin¹, J.-P. Laedermann¹, L. Paterne¹, F.O. Bochud¹ J.O. Prior², F.R. Verdun¹, S. Baechler¹

¹Institute de radiophysique, CHUV, Lausanne, Suisse ²Service de médecine nucléaire et imagerie moléculaire, CHUV, Lausanne, Suisse

Utilisation de l' 90Y en Radiothérapie Interne Vectorisée

- ➤ Peptides (DOTATOC DOTATATE; Tumeurs Neuroendocrines)
- ➤ Anticorps (Zevalin; lymphome NHL)
- SIRT microsphères(carcinomes et métastases hépatiques)

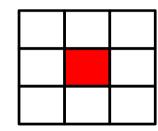
- Désintégration en 90 Zr ($T_{1/2} = 64 h$)
- Emission β à 99.983% (\rightarrow dépôt de dose)
- Production interne e+/e-: 32ppm

Imagerie PET 90Y
Post-traitement possible

Evaluation dosimétrique Post-traitement possible

But de l'étude

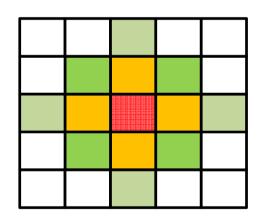
Comparaison de deux approches dosimétriques voxelisées basées sur l'imagerie PET de l'90Y,


- Dosimétrie basée sur la déposition locale de toute l'énergie dans le voxel
- 2) Dosimétrie basée sur un approche de convolution avec un noyau de dose.

Dosimétrie Voxelisée PET 90Y

Comparaison de deux approches

1) **Déposition locale de l'énergie** dans le voxel même proportionellement à l'activité mesurée


$$D_s = \tilde{A_s} \times S(s \leftarrow s)$$

2) Convolution par un noyau de dose

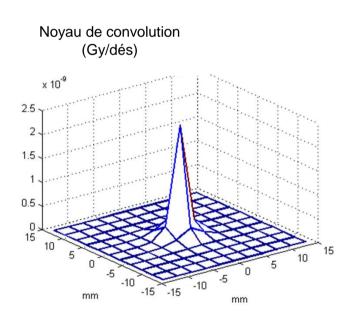
$$D_t = \sum_{s=0}^{N-1} \tilde{A}_s \times S(t \leftarrow s)$$

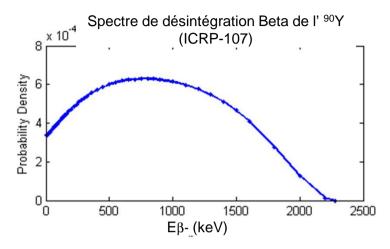
Noyau de dose S(t←s)

Simulation Monte Carlo:

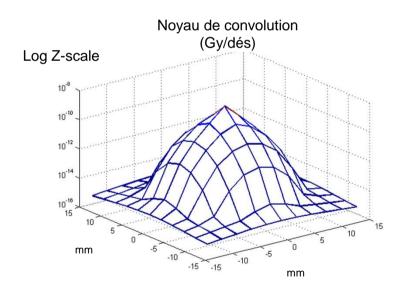
Sections efficaces Penelope sur GEANT-4 (ver. 4.9.6) cut de 10⁻⁸ cm

Nombre de dés. = 109 histoires (100 processeurs → temps de calcul ~h)



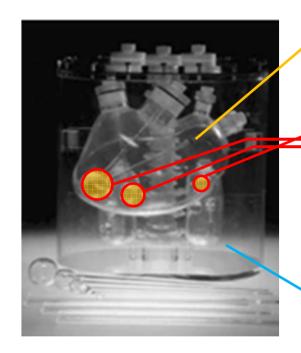

Le noyau de convolution $S(t \leftarrow s)$

t: voxel cible (target)


s: voxel source

 $S(t \leftarrow s)$ [Gy/dés.]: dose absorbée dans le voxel t (par unité de désintégration) due à l'activité présente dans le voxel s

 $E_{\text{moy}^{\circ}\beta^{-}} = 0.93 \text{ MeV} \rightarrow R_{\text{moy}} = 2.5 \text{ mm}$ $E_{\text{max}^{\circ}\beta^{-}} = 2.23 \text{ MeV} \rightarrow R_{\text{max}} = 11 \text{ mm}$


Dimensions des voxels PET: $2.73 \times 2.73 \times 3.27$ mm

Acquisition PET 90Y, Fantôme abdomen - foie

Volume foie principal 1.8L

Activité volumique: A_{fr} = 1 MBq/mL

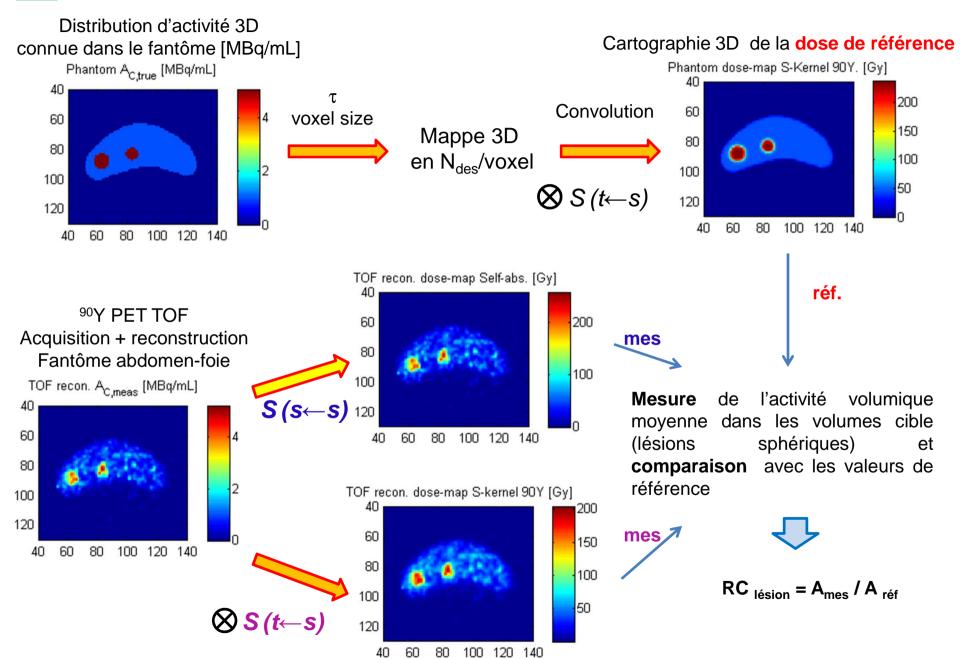
Trois lésions sphériques

De 20, 30 et 40 mm de diamètre respectivement

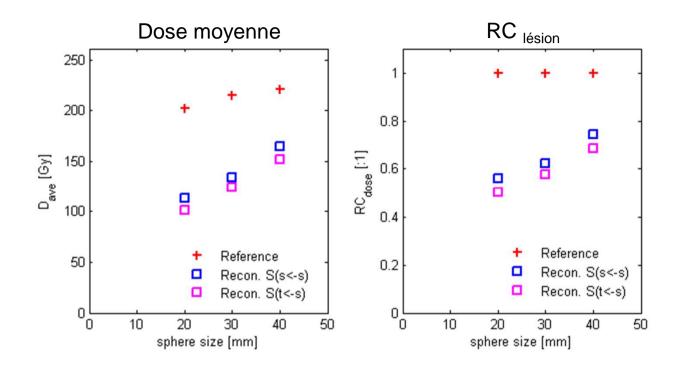
Activité volumique: A_I = 5MBq/mL

Rapport $A_I/A_{fr} = 5:1$

Cavité abdominale restante remplie par de l'eau sans aucune activité volumique:

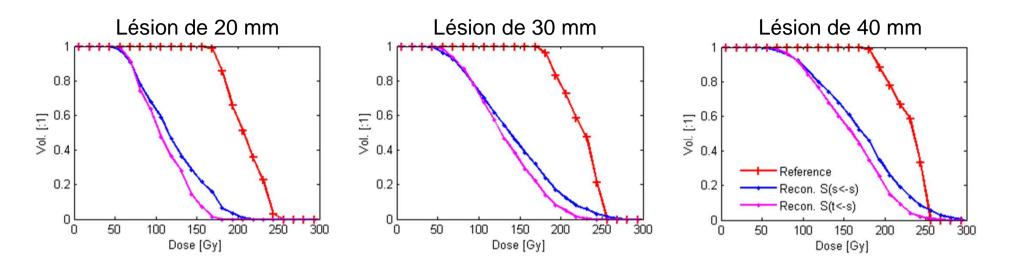

Activités volumiques et rapport d'activité sont représentatives de situations clinique en SIRT ⁹⁰Y (ex. foie de 2L injecté avec une activité totale de 2GBq)

Acquisition PET/CT (GE Discovery 690 LYSO – TOF)


- ➤ 30 min acquisition par position (2x positions)
- > Parametres de reconstructions: OSEM-3D, 2 IT x 16 subsets

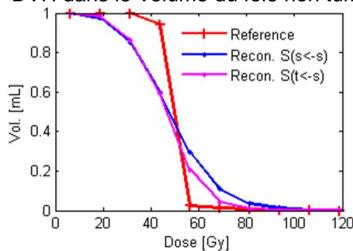
Quantification/comparaison des deux approches

Coefficients de recouvrement en dose (RC_{lésion})



Coefficients de recouvrement en dose

Lesion (TOF)	20 mm	30 mm	40 mm
RC S(s←s)	0.56	0.62	0.74
RC S(t←s)	0.5	0.58	0.69


La dose moyenne obtenue avec l'approche par convolution est plus éloignée de la référence

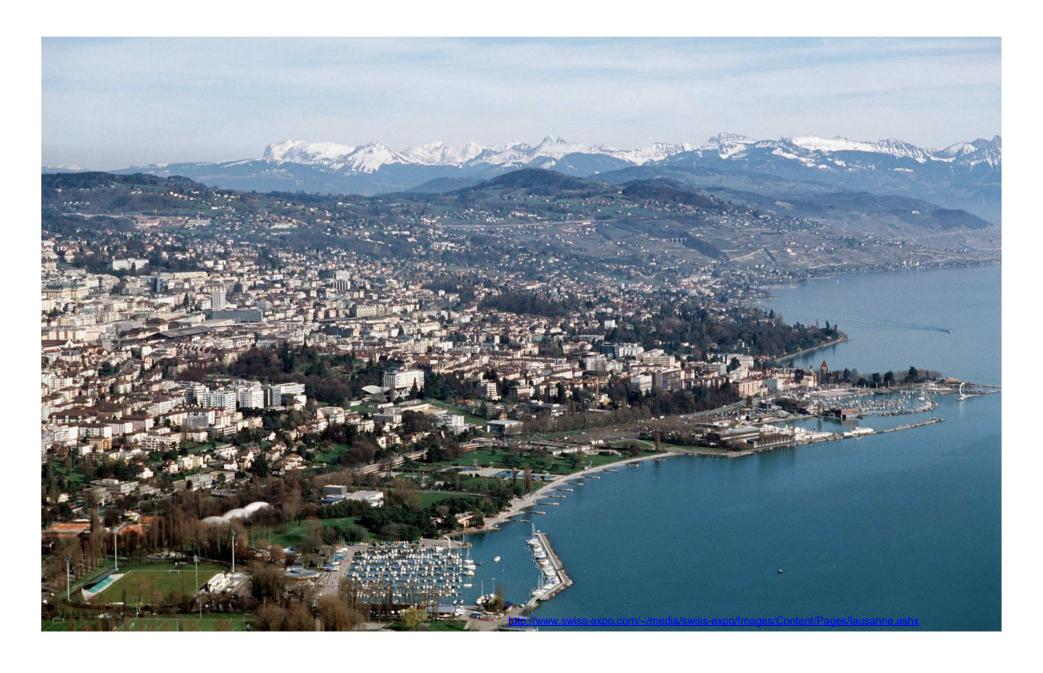
Histogrammes Dose-Volume (DVH) dans les lésions

Histogrammes Dose-Volume (DVH) dans le volume non tumoral

DVH dans le Volume du foie non tumoral

La fraction du volume où la dose est supérieure à 50 Gy est de:

- > 5% pour la référence,
- > 20% pour celui calculé par convolution
- ➤ 30% pour celui calculé par déposition locale.



Conclusions

- ➤ Cause: résolution spatiale limitée des images PET elles-mêmes et discrétisation (matrice de reconstruction) → Effet de volume partiel
- Conséquence: la méthode simple basée sur la déposition locale de toute l'énergie dans le voxel (S(s←s)) est:
 - Plus simple
 - Plus rapide
 - Plus appropriée à la dosimétrie des lésions tumorales
- La quantification du volume non-tumoral excédant une certaine dose est plus précise en utilisant l'approche par convolution (bruit dans l'image)

Remarque: Etude effectué sur fantôme statique

Réalité clinique, mouvement respiratoire \rightarrow la répartition de l'activité mesurée entre les voxels voisins augmente et doit être prise en compte (gating respiratoire).

Merci pour votre attention