

Evaluation de la dose reçue par une manipulatrice d'une unité de médecine nucléaire lors d'un incident de contamination par du thallium-201

Alain RANNOU

Contexte

- Incident le 19 juillet 2007
- Chlorure de ²⁰¹TI (79,9 MBq/mL)
- Contenu de la seringue projeté sur le visage, la blouse, les mains
- Comptages et décontaminations
- Déclaration à l'ASN
 - → Dose à la peau ? au cristallin ?

Caractéristiques du ²⁰¹TI

T1/2 = 3,04 joursTeffective = 60 h

	Energie (keV)	%
γ/X	71	47
	135	3
	167	10
Électrons	16	10
	84	16
	153	3

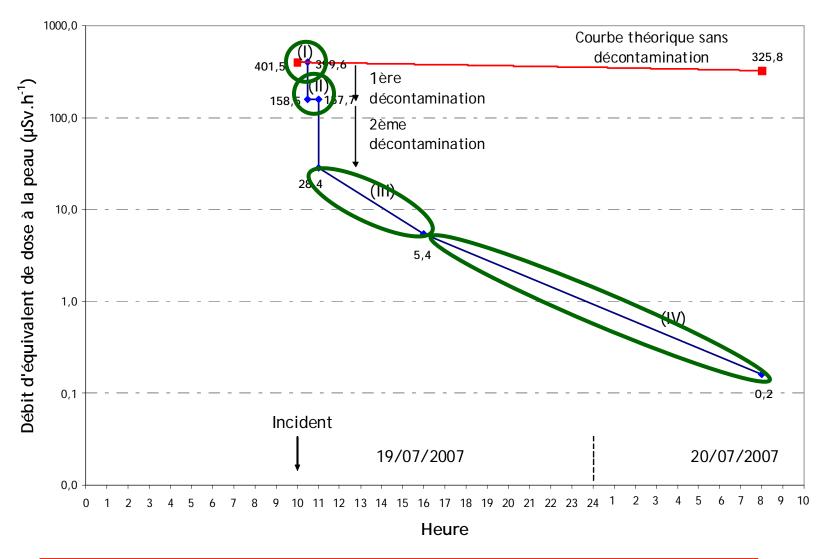
Données disponibles »

	10H00	10H30	11H00	16H00
Localisation	Avant décontamination	Après 1ère décontamination	Après 2ème décontamination	
Visage	15 000	6 000	1 180	330
Avant-bras	6 500	2 900		
Poignet	6 500	2 900		
Main	6 500	6 500	658	250

Taux de comptage (cps) mesurés à l'aide d'un contaminamètre

(BdF = 130 cps)

1) Dose à la peau?


Hypothèses

- Surface de peau contaminée = 10 x 10 cm²
- Contamination uniforme
- Rendement du détecteur sous 4 π = 10%
- Bruit de fond déduit
- 1 000 cps ⇔ 1 000 / (0,1 x 100) soit 100 Bq.cm⁻²
- Pour 1 Bq.cm⁻² de 201 TI : Hp(0,07) = 2,7.10⁻¹ µSv.h⁻¹ (Guide Delacroix et al.)

D'où

1 000 cps \Leftrightarrow 100 Bq.cm⁻² \Leftrightarrow 27 μ Sv.h⁻¹ à la peau

Débit de dose à la peau (visage)

Débits de dose et équivalents de dose intégrés lors de chaque épisode

Episode	Débit de dose moyen (µSv.h ⁻¹)	Equivalent de dose intégré (µSv)	
l	400	200	
II	158	79	
III	16,9	84	
IV	2,8	45	
Total		408 µSv	

2) Dose au cristallin?

Hypothèses (1)

- Projection d'une goutte de solution (10 μL) dans l'œil
 10 μL ⇔ 0,8 MBq
- électrons < 153 keV → Dose au cristallin (3 mm de prof.) due uniquement aux gamma
- D'après ICRU 57, pour les E γ du ²⁰¹TI : Hp(3) \approx Hp(0,07)
- 1 Bq de ²⁰¹TI ⇔ 2,2.10-² µSv.h-¹
 (Guide Delacroix et al.)

D'où

0,8 MBq dans l'œil ⇔ 17,6 mSv.h-1 au cristallin

Hypothèses (2)

- Renouvellement partiel des larmes = 16% par minute
 - → Temps de résidence des larmes : T ≈ 6 min
- Goutte étrangère de volume > 10 μL :
 - → T < 1 min (en l'absence de lavage)
 - → T << 1 min (en cas de lavage oculaire)

$$Hp(3) = 17.6 \text{ mSv.h}^{-1}$$

D'où une dose délivrée en 1 min au cristallin de 17,6 / 60 soit 0,3 mSv

Conclusions

- Incertitudes inhérentes aux mesures et aux modèles utilisés
- Approximations de calcul
- Doses calculées très inférieures aux limites réglementaires
- Bonne prise en charge de l'incident par l'unité de MN
- Efficacité de la mise en œuvre d'une procédure de décontamination
- Rappel des bonnes pratiques
 - ✓ Port de blouse et gants
 - ✓ Port de lunettes de protection

Merci de votre attention!