

Journées SFRP du 25 et 26 mars 2014

Codes de calcul en radioprotection, radiophysique et dosimétrie

Optimisation des études en radioprotection pour le dimensionnement des emballages de transport et d'entreposage de matières radioactives

- **▶** Contexte
- Présentation d'un emballage de transport
- ► Modélisation géométrique fine avec le code TRIPOLI 4.7
- Outil de visualisation 3D
- **▶** Conclusion

Contexte

- ► AREVA TN : transport et entreposage des matières radioactives
- Moyens de prévention au cours des transports
 - Maîtrise des risques par l'organisation des transports
 - Systèmes passifs de l'emballage
- Réglementation transport (AIEA) spécifique
 - Critères de sous-criticité
 - Critères sur la température
 - Critères sur la tenue mécanique
 - ◆ Limites des doses efficaces autour de l'emballage

- Rôle déterminant des études de radioprotection
 - Dimensionnement des emballages
 - Optimisation des chargements
 - Prévision des doses opérationnelles
- Schéma de calcul

◆ ORIGEN-ARP 6 : évaluation des termes sources à partir du module de calcul TRITON du système SCALE 6 avec en particulier le code d'évolution ORIGEN-S

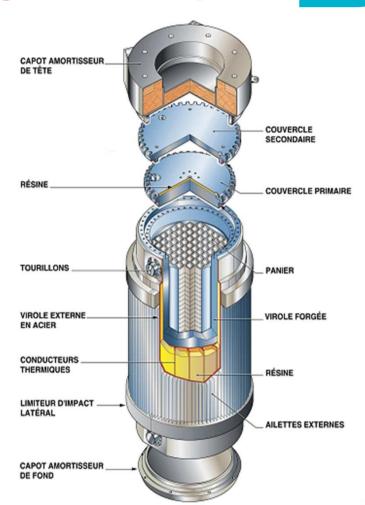
◆ TRIPOLI 4.7 : code Monte Carlo simulant le transport des particules en 3D utilisant la bibliothèque CEA V5 (JEFF3 et ENDF/B-VII)

Qualification du schéma de calcul

- ◆ <u>Indépendamment</u> : qualifications d'ORIGEN-ARP 6 et de TRIPOLI 4.7 à partir de benchmarks internationaux
- Globalement : qualification du schéma de calcul à partir de mesures réalisées par AREVA TN autour des emballages (benchmarks Calculs / Mesures)

Exemple: synthèse du benchmark Calculs / Mesures pour un emballage chargé de combustibles usés :

	$\frac{DDE_{calcul\acute{e}} - DDE_{mesur\acute{e}}}{DDE_{mesur\acute{e}}}$
TOTAL	Entre 10 et 40%


- **▶** Contexte
- ► Présentation d'un emballage de transport
- Modélisation géométrique fine avec le code TRIPOLI 4.7
- Outil de visualisation 3D
- **▶** Conclusion

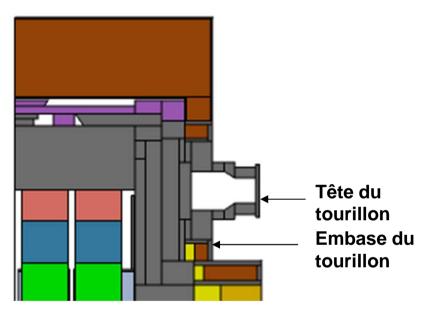
Présentation d'un emballage de transport

► Principaux composants

- Aménagement interne (panier)
- Enceinte de confinement fermée par des couvercles
- Blocs de matériaux neutrophages (résine)
- Conducteurs ou ailettes en cuivre
- Tourillons en acier
- Capots amortisseurs (pour le transport)

- **Contexte**
- ► Présentation d'un emballage de transport
- ► Modélisation géométrique fine avec le code TRIPOLI 4.7
- Outil de visualisation 3D
- **▶** Conclusion

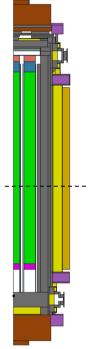
► Région tourillon

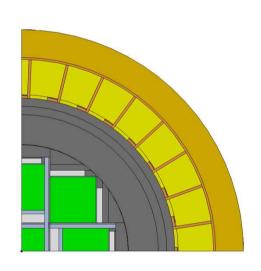

- Zone très fréquentée lors des phases de manutention
- Zone soumise à de fortes sollicitations mécaniques
- Zone très hétérogène en termes de blindage

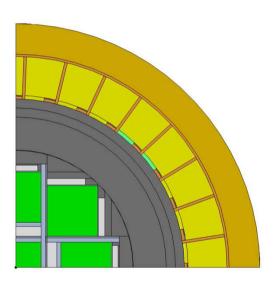
► Région tourillon :

		DDE au contact d'un emballage chargé d'un contenu enveloppe (mSv/h)		
		Neutron	Gamma	TOTAL
Radial mi-hauteur		0,13	0,07	0,20
Tourillon	Tête	0,41	0,05	0,46
	Embase	1,75	0,24	1,98

- Forte variation du DDE
- DDE parfois maximal

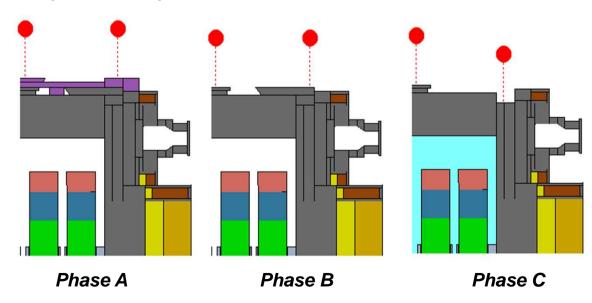

Nécessité d'une modélisation précise au niveau des tourillons





► Zone radiale : prise en compte de la virole, des conducteurs thermiques et de la résine neutrophage

Estimation des DDE à partir d'études de sensibilité



- **▶** DDE en phases d'exploitation
 - Simulation des conditions exactes de manutention
 - Estimation des DDE de façon ponctuelle afin de prévoir la dose reçue par les opérateurs

Exemple: Estimation des DDE à 50 cm d'un emballage chargé de combustibles usés lors de 3 phases d'exploitation

▶ DDE en phases d'exploitation (suite)

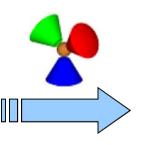
	DDE _{TOTAL} à 50 cm d'un emballage chargé de combustibles usés (mSv/h)		
Emplacement des points de calcul	Phase A	Phase B	Phase C
Centre du couvercle	0,32	0,57	0,02
Vis du couvercle	0,14	0,26	0,03

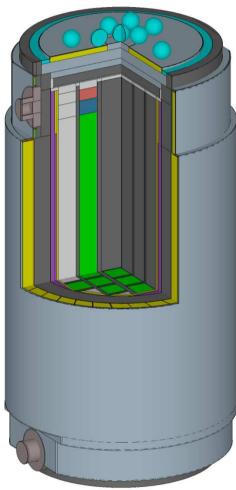
Optimisation de la dose reçue par les opérateurs en accord avec le principe ALARA

- **Contexte**
- ► Présentation d'un emballage de transport
- Modélisation géométrique fine avec le code TRIPOLI 4.7
- Outil de visualisation 3D
- **Conclusion**

Outil de visualisation 3D

► Utilisation d'un outil de visualisation 3D : TRIAD

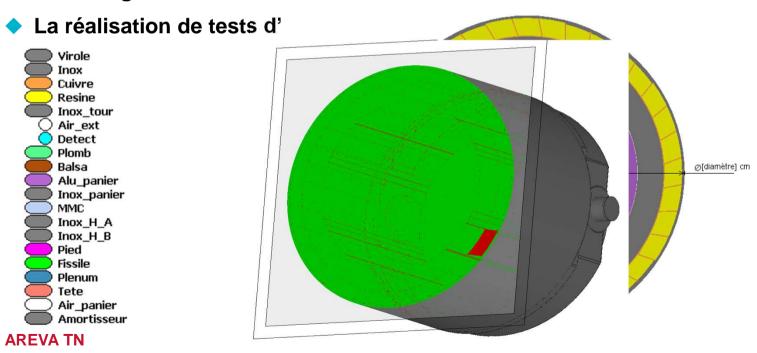

```
// Virole
SURF 4 CYLZ 0. 0. 85.
                                    // Virole en acier
SURF 80 CYLZ 0. 0. 96
                                  // Jeu résine/cuivre
                                     // Fond en acier
                               // Modif virole en acier
               0. 0. 56.25
SURF 164 CONEZ 0. 0. 212.1 45. //
SURF 167 CYLZ 0. 0. 98
                               // Modif pour tourillon haut
// Modif pour tourillon haut


        SURF
        169 PLANZ
        385.0
        // Hodif pour tourillon h

        SURF
        172 PLANZ
        78.5
        // Hodif pour tourillon haut

        SURF
        173 CYLZ
        0.
        0.
        96.5
        // Modif pour tourillon haut

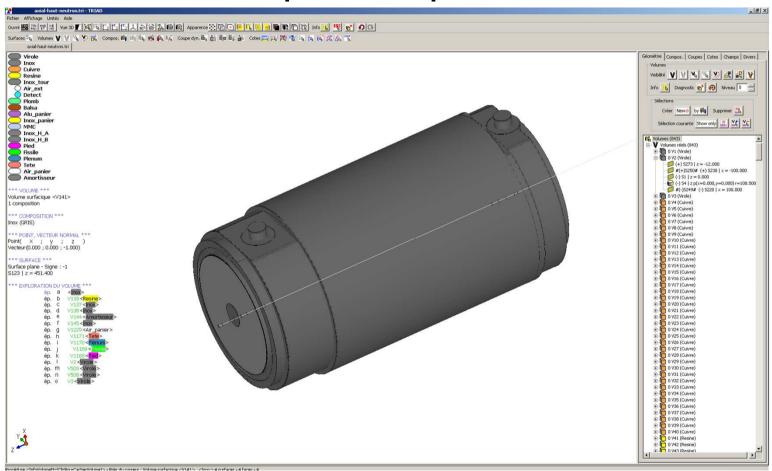
                                   // Modif pour tourillon bas
SURF 178 PLANZ 2.0
                                  // Modif pour tourillon bas
// *********************************//
VOLU 1 EQUA PLUS 4 1 2 8 166
                                        MOINS 2 210 173
                                                             FINV // Rainure virole
VOLU 204 EQUA PLUS 4 1 2 167 31
                                        MOINS 2 4 172
                                                             FINV // modif virole
VOLU 205 EQUA PLUS 4 1001 1002 167 172
                                     MOINS 3 169 807 4 FINV //
VOLU 207 EQUA PLUS 4 301 2 173 16
                                     MOINS 3 4 178 907 FINV //
VOLU 209 EQUA PLUS 4 1 2 173 178
                                        MOINS 2 167 9 FINV //
VOLU 2040 EQUA PLUS 4 1 2 167 25
                                        MOINS 2 40 31
                                                             FINV // modif virole
VOLU 2041 EQUA PLUS 4 1 2 167 178
                                        MOINS 2 4 25
                                                             FINV // modif virole
```

Outil de visualisation 3D

► TRIAD permet :

- ◆ La visualisation et l'animation en 3D du modèle géométrique
- L'apparition ou disparition de volumes
- La réalisation de coupes
- L'affichage des cotes



Outil de visualisation 3D

► TRIAD : une interface complète et simple d'utilisation

Plan

- **Contexte**
- Présentation d'un emballage de transport
- Modélisation géométrique fine avec le code TRIPOLI 4.7
- Outil de visualisation 3D
- **▶** Conclusion

Conclusion

- Amélioration constante de la précision des modèles géométriques pour les études de radioprotection
 - Connaissance précise de la répartition des DDE y compris dans les zones de fortes hétérogénéités
 - Meilleures prédictions des doses reçues par les opérateurs lors des phases d'exploitation en accord avec le principe ALARA
 - Maîtrise du degré de conservatisme associé aux simplifications géométriques
- Mise en place d'un outil de visualisation (TRIAD) facilitant la complexification des modèles géométriques
- ► Amélioration future : mise en place d'un outil de CAO pour l'élaboration de la géométrie implantée dans TRIPOLI 4.7

