

Montpellier, le 2 octobre 2018

Evolution de la réponse hémodynamique du cortex sensori-moteur par fNIRS : une étude préliminaire des effets de la stimulation transcrânienne par courant direct anodique

Pierre Besson (PhD)

M. Muthalib (PhD) et S. Perrey (PR)

Stimulation transcranienne à courant continu Haute Définition (HD-tDCS)

Montage anodal 4 x 1

Une technique remise au goût du jour

Rome antique

EuroMov

1881

Neuroenhancement

NeuroImage 85 (2014) 889-894

Editorial

Neuroenhancement: Enhancing brain and mind in health and in disease

Vincent P. Clark ^{a,*}, Raja Parasuraman ^b

Principe de la tDCS

EuroMov

5

tDCS et neurones

tDCS et décharges spontanées

tDCS et excitabilité cortico-spinale

Couplage neuro-vasculaire

Hanakawa (2015)

But et hypothèse

 But : Évaluer les effets de la HD-tDCS sur les réseaux hémodynamiques corticaux du cortex sensorimoteur.

 Hypothèse : Les variations hémodynamiques seront plus importantes au niveau du site de stimulation comparativement aux régions périphériques et l'hémisphère opposé.

Méthodes

Participants : 15 adultes sains $(34,2 \pm 12,3 \text{ age})$

Protocole :

3 sessions dont 1 sham 10 min HD-tDCS 2 mA Anode sur C3

HD-tDCS electrodes fNIRS probes Anode Receiver Cathode Emitter Fpz Fp2 Fp1 (AF8) F10 F9 F8 F7 **F6** 0 FT10 FT8 3 4 Τ8 Τ7 5 6 14 13 TP7 TP8 16/15/ 8 TP9) TP10 P1 Pz P2 P6 P8 PO3 P10 P9 PO PO7 PO8 01 02 Öz POI 09 010

Matériels:

EuroMov

fNIRS (Oxymon MkIII, Artinis, Pays-Bas) tDCS (Startim®, Neuroelectrics, Espagne)

Évolution temporelle des réseaux hémodynamiques corticaux du cortex sensorimoteur (abscisses de 0 à 10 min; ordonnés ∆µM) EuroMov

Évolution temporelle des réseaux hémodynamiques corticaux du cortex sensorimoteur (abscisses de 0 à 10 min; ordonnés ∆µM) EuroMov

Évolution temporelle des réseaux hémodynamiques corticaux du cortex sensorimoteur (abscisses de 0 à 10 min; ordonnés ∆µM) EuroMov

Discussion

- La distribution du champ électrique semble être plus importante pour l'hémisphère stimulé.
- Elle est supérieure à l'intérieur du montage 4x1 HD tDCS.
- Les 90 secondes de stimulation pour la condition sham engendre une variation, mais plus modérée.

Etude de reproductibilité

Brain Stimulation

Volume 10, Issue 2, March–April 2017, Page 400

Test-retest reliability of transcranial direct current stimulation-induced modulation of resting-state sensorimotor cortex oxygenation time course P. Besson^{*1}, G. Vergotte ¹, M. Muthalib ^{1, 2}, S. Perrey ¹

. .

Show more

https://doi.org/10.1016/j.brs.2017.01.186

Get rights and content

Etude de reproductibilité

Possibilité de monitorage online

Journal of Neuroscience Methods Volume 274, 1 December 2016, Pages 71-80

NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model

Mehak Sood ^{a, 1}, Pierre Besson ^{b, 1}, Makii Muthalib ^b, Utkarsh Jindal ^a, Stephane Perrey ^b, Anirban Dutta ^c ²²
^M, Mitsuhiro Hayashibe ^{c, 2}

Show more

https://doi.org/10.1016/j.jneumeth.2016.09.008

Get rights and content

Merci pour votre attention

