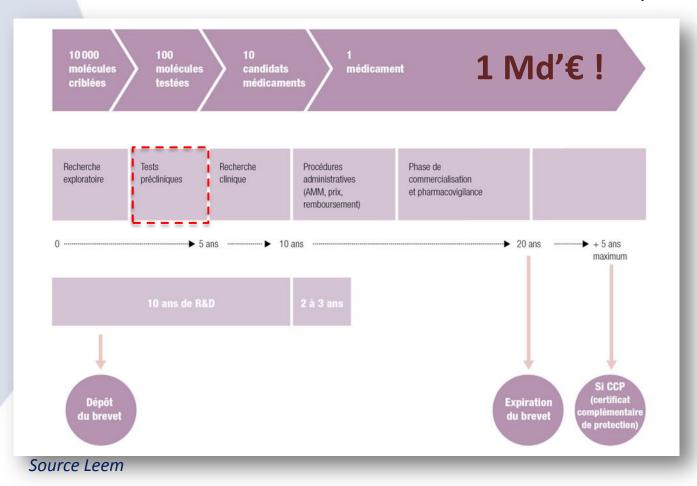
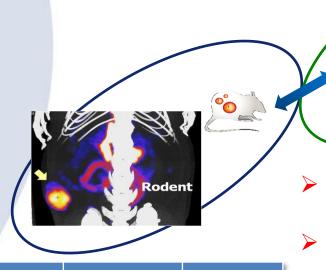


Optimisation des expositions en imagerie préclinique : Un challenge quotidien


Sylviane PREVOT & Lydie HOUOT, PCR Plateforme d'imagerie et de radiothérapie préclinique CRLCC G.F. Leclerc, Dijon

Le développement d'un médicament: Un long parcours ...

- Recherche préclinique ... avant la clinique !
 - Évaluation d'une molécule sur des cellules en culture ou de petits animaux



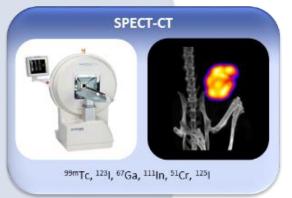
L'imagerie préclinique: Un outil de recherche translationnelle

- Modalités d'imagerie similaires
- Biomarqueurs similaires

Modèles expérimentaux des pathologies humaines

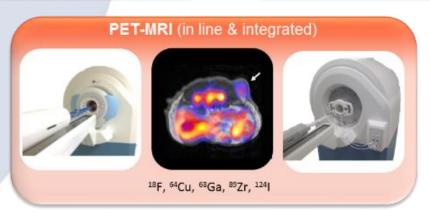
Résolution	TEMP	TEP
Clinique	10 - 15 mm	5 mm
Préclinique	0,4 - 1,4 mm	1 - 2 mm

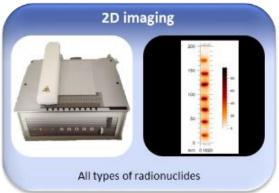
 Nombreuses installations créées au sein des services de Médecine nucléaire


Soumises à des exigences strictes :

Human


- Réglementation & éthique de l'expérimentation animale
- Détention & utilisation de sources radioactives non scellées

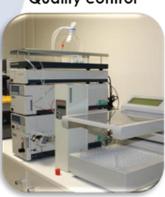

Les modalités d'imagerie





Du radiomarquage à l'imagerie: Identifier et évaluer les niveaux d'exposition

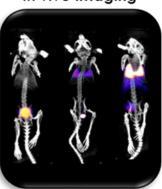
Radiolabeling


Cell culture

Injection

Complementary analyses

Imaging Study Process


Quality control

Animal model

In vivo imaging

Imagerie préclinique & radioprotection: Point de vue des chercheurs

- Pour la plupart des opérateurs :
 - Faibles activités utilisées

- Petit nombre de manipulations quotidiennes
- Seringues manipulées rapidement sans blindage
- Risque d'exposition globalement très faible
 - Ne justifie pas un programme de protection aussi contraignant
- Plan d'optimisation des expositions jugé excessif au regard des enjeux de leur recherche !!

L'exposition sur une plateforme d'imagerie

- Réception, stockage des sources
- Travail en boîtes à gants (marquage, prélèvements, mesures des activités...)
- Purification de la molécule marquée, centrifugation
- Préparation des animaux et administration des produits marqués
- Positionnement des animaux et réalisation des images
- Stabulation des animaux (nourriture, changement des litières)
- Sacrifice, prélèvements d'organes, comptage et stockage des tubes
- Gestion des cadavres et litières
- Gestion des sources utilisées et des déchets
- Contrôles qualité des produits et des équipements (remplissage et manipulation des fantômes radioactifs, ...)

Radionucléides utilisés : faibles activités ?

Utilisation	Radionucléide	Constante de débit de kerma dans l'air (*) Γ μSv.m².h-¹.GBq-¹	e _{1/10} Pb (mm)	A max utilisée MBq
Imagerie TEMP	^{99m} Tc	14,2	2	4000
	¹¹¹ ln	77	8	250
Imagerie TEMP + Thérapie	131	56,2	24	2400
	⁶⁷ Cu	14	5	300
	¹⁸⁸ Re	11	40	800
	¹⁷⁷ Lu	5	7	2500
Imagerie TEP	⁶⁴ Cu	25	16	240
	¹⁸ F	135	16	1000
	⁸⁹ Zr	194	50	240

(*) ICRP 107 « Nuclear Decay for Dosimetric calculations » - Elsevier

Quels enjeux de RP?

- Point de vue d'une PCR :
 - Absence de protocole standard : incertitude ++
 - Activités utilisées variables souvent élevées (MBq, GBq)
 - Utilisation de radionucléides émetteurs de particules chargées de haute énergie
 - Animaux injectés = sources mobiles et manipulées à la main
 - Petit nombre d'opérateurs multi-sites
 - Formation théorique & pratique des chercheurs à la RP

Garantir le niveau de protection optimal quelles que soient les conditions de travail = un défi majeur !

EXPOSITION

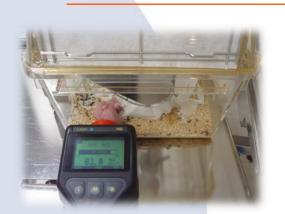
Pré-requis : bonne connaissance des pratiques

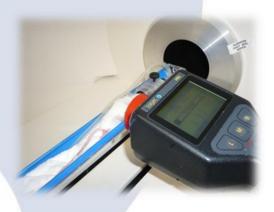
CHERCHEUR

- Conception du projet
- Identification des contraintes expérimentales
- Définition des gestes techniques

PCR

- Analyse & évaluation des risques d'exposition
- Identification des contraintes
 de RP associées
- Bonnes pratiques de RP


Optimisation de la radioprotection



Mise en oeuvre du projet A reproduire pour chaque étude!

Les études dosimétriques des postes de travail

- Analyse préalable (calcul) suivie d'une phase de validation (mesures)
 dans les conditions réelles de travail = temps +++
- Analyse des résultats et rédaction de fiches d'expérimentation dédiées

Le risque d'exposition externe f(radionucléide, activité utilisée)

	Débit de dose (mSv.h-1)*							
Radionucléide	^{99m} Tc	¹³¹	¹¹¹ ln	⁹⁰ Y	¹⁷⁷ Lu	⁶⁴ Cu	¹⁸ F	⁶⁸ Ga
Emissions (keV)	Gamma 140 (89 %)	Bêta, 606 (90 %) Gamma, 365 (82 %)	Gamma 171 (90 %), 245 (94 %)	Bêta pur 2284 (100 %)	Bêta 497 (79%), 208 (11%) Gamma 55 (5%), 113 (6%) 208 (11%)	Bêta 578 (37%) Positons 653 (18%) Gamma 511 (36%)	Positons 634 (97%) Gamma 511 (194%)	Positons 822 (1%) 1899 (88%) Gamma 1077 (3%) 511 (178%)
Groupe radiotoxicité	4	3	3	2	4	3	(3)	2
Demi-vie	6 H	8 j	2,8 j	2,7 j	6.7 j	12,7 H	2 H	1,13 H
Ecran Pb, e _{1/10} (mm)	1	24	4	-	7	16	16	33
Parcours verre (mm)	-	0.9	-	4.9	0.7	1.0	0.9	3.9
Parcours plexiglas (mm)	-	1.6	-	9.2	1.3	1.8	1.7	7.2
Contact 200 MBq Flacon verre 10 mL	20	56	66	240	5.8	26	140	180
Contact 200 MBq Seringue 5 mL	70	220	240	8800	20	116	(580)	6200
Risque EE contact / Tc-99m (Fl. verre)	1	2,8	3,3	12	0,3	1,3	7	9
Risque EE contact / Tc-99m (Seringue)		3,1	3,4	(125)	0,3	1,7	8,3	(88)

^{*} Delacroix, Guerre, Leblanc - EDP Sciences 2004 (Groupes de risque : 2 à 4 / forte à faible radiotoxicité)

Limite au-delà de laquelle des réactions tissulaires nocives à la peau sont susceptibles d'apparaître = 500 mSv.cm⁻²

Risque d'exposition des mains Sans blindage

Radionucléide (200 MBq)	Débit de dose contact seringue (mSv.h-1)	Délai pour atteindre 500 mSv
¹⁷⁷ Lu	20	25 heures
^{99m} Tc	70	7 heures
¹³¹	220	2.3 heures
¹⁸ F	580	54 minutes
(⁶⁸ Ga)	6200	4,8 minutes
(⁹⁰ Y)	8800	(3,4 minutes

^(*) Delacroix, Guerre, Leblanc - EDP Sciences 2006

Blindage adapté = facteur influençant le plus l'exposition des doigts sans garantir une faible exposition (source ORAMED)

REX 1 : Influence du blindage

☐ Cu-64: mesures externes

- E1= 511 keV (36%), $E_{\beta max}$: 578 keV (β⁻, 37%) et 653 keV (β⁺,18%)
- e_{1/2} = 13 mm Pb (tablier 0,5 mm inefficace = inutile)
- DD1 = 50,1 μSv.h⁻¹ / DD2 = 29,4 μSv.h⁻¹ / DD3 = 3,6 μSv.h⁻¹
 - Choix du blindage : Dose peau réduite d'un facteur 1,7 à 14

REX 1 : Influence du blindage

- ☐ Mesures des DD à proximité des sources blindées :
 - Au contact du plateau (4 μtubes) : DD > 1000 μSv.h⁻¹
 - En BAG (50 mm Pb) : risque expo mains seul
 - En dehors BAG : risque déplacé au CE
 - Révision du zonage ??
 - Au niveau du rond de gant : 51 μSv.h⁻¹
 - Refermer la protection des ronds de gants
- ☐ Dispensation : **blinder les seringues**
 - 1 seringue 139 MBq (Cu-64): mesures externes
 - A 1cm sans protection : $DD_1 = 3892 \mu Sv.h^{-1}$ (65 μSv en 60 s)
 - Au contact du PS (W, 5 mm): 1770 μSv.h⁻¹ (30 μSv en 60 s)
 - Durée manipulation compensant le blindage ? t < 27 s
 - Dose max sur 1cm² de peau au contact source nue ??

Etude du poste « Radiomarquage » Hypothèses 2018

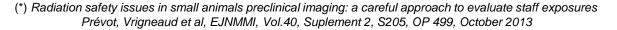
Activité utilisée = A max livrable sans blindage

Évaluation de l'exposition des mains					
Radionucléide		Lu-177	F-18	Zr-89	
Activité (MBq)	240	2500	1000	240	
DD mesuré contact (μSv/h/MBq)	190	13,3	270	380	
Durée d'exposition au contact (min)		3	3	3	
Dose peau/opération au contact (mSv) (1)		1,66	13,5	4,56	
DD mesuré à 10 cm (μSv/h/MBq)	6,2	0,3	7	45	
Durée d'exposition à 10 cm (min)	10	10	10	10	
Dose peau/opération à 10 cm (mSv) (2)		0,12	1,16	1,8	
Total annuel (1) + (2) mSv / 40 opérations		71	586	254	
Dose collective calculée à la peau (n=2)		1012 mSv			
Dose collective Hp(0,07) Bagues 12 dernier mois (n=2) 21,5 mSv					

REX 2 : Optimisation des injections

- Port systématique de gants
- Utilisation d'un protège-seringue adapté
- Port tablier Pb (hors TEP; E < 200 keV)</p>
- Injection IV (200 μL) :
 - Principal défi = le mouvement !
 - Durée d'injection directe avec PS : 40-90 s (2012)
- ☐ Pose d'une voie d'abord à froid :
 - Durée d'injection sur cathéter avec PS : 3-5 s (2014)
 - Évite la manipulation directe de l'animal injecté
 - Limite le risque de piqûre & d'extravasation

REX Optimisation des « Dissections » : Interposition d'un écran (15 mm Pb)*



Dose équivalente Hp(10) mesurée à l'aide d'un dosimètre électronique DMC2000 XB (Mirion Technologies) pendant les dissections de 15 souris (111 In-anticorps, A = 8,2 \pm 1,2 MBq)

Durée des dissections : 6 à 15 min/animal, f(opérateur)

*WB Hp(10) μSv (n=15)	Devant l'écran	Derrière l'écran
Injections	17	<1
Dissections	19	<1

+ 10 mm verre au Pb)

Bilan dosimétrie passive sur 12 derniers mois (injections, imagerie, soins, dissections): Hp(10) < 0.2 mSv / Hp(0.07) = 5.1 mSv (n=2)

