

Faire avancer la sûreté nucléaire

CARACTÉRISATION DE SOURCES

Chronologie d'une intervention

SIRSE - Service d'intervention radiologique et de surveillance de l'environnement

Journées PCR

PSE-ENV/SIRSE 7 novembre 2018

Sandrine MOUGNIOT

© IRSN

Sommaire

Les équipes d'interventions de l'IRSN

Les évènements déclencheurs d'une expertise

La démarche d'expertise

Les équipes et les moyens

Les équipes d'intervention en radioprotection opérationnelle de l'IRSN

11 personnes

Les moyens

spectromètre γGe

spectromètres

γ Nal

scintillateur liquide

compteur

 α B

sac à dos avec sonde bas flux (DeD)

sacs à dos avec 1 spectromètre γ Nal

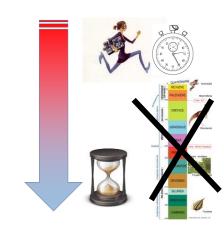
MARCASSIN

Radiamètre Contaminamètre

Scintillomètre

Spectromètre y

Robot manipulation



Une intervention radiologique c'est quoi?

Evènements déclencheurs?

Timing d'intervention

- un accident de transport (sources/déchets)
- > un portique qui sonne en entrée/sortie de sites...
- > une découverte d'un objet avec un trèfle radioactif
- > une contamination radioactive sur un terrain

... Toute situation laissant apparaitre une suspicion

de risque radiologique non maitrisé

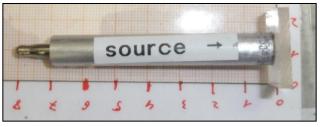
Chez qui?

- Organismes publics (lycée....)
- > Voie publique
- > Organismes privés
- > Particuliers

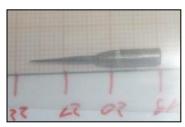
Une caractérisation radiologique c'est quoi?

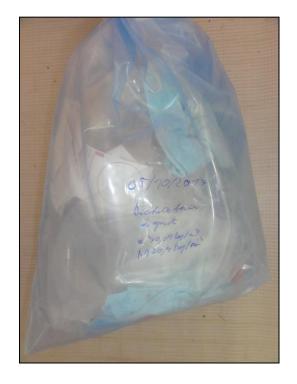
- Déterminer l'ensemble des caractéristiques d'une source radioactive :
 - Le ou les radioéléments;
 - L'activité de chaque radioélément;
 - Les dimensions;
 - La masse;
 - Les mesures de débits de dose à différentes distances;
 - Sa constitution (matériaux);
 - Si elle est scellée ou « fuyarde »;
 - La position du centre actif;
 - Etc.

Une source de rayonnements ionisants c'est quoi?

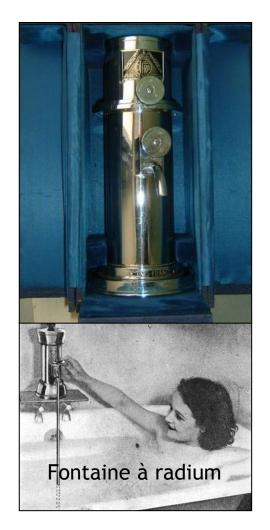

Entité susceptible de provoquer une exposition, par exemple en émettant des rayonnements ionisants ou en rejetant des substances radioactives

Des sources



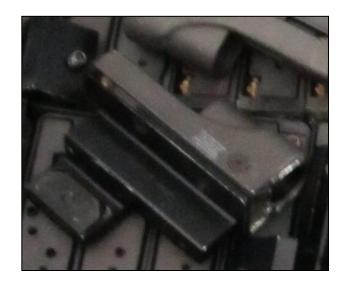


Des fûts de déchets remplis d'objets divers (bois, métal, mousse,...)


Des sacs de déchets technologiques (gants, tenues, frottis secs,...)

Des objets du passé

Plaque photo au sel d'uranium



Aiguilles de montre au ³H ou au ²²⁶Ra

Des objets d'aujourd'hui

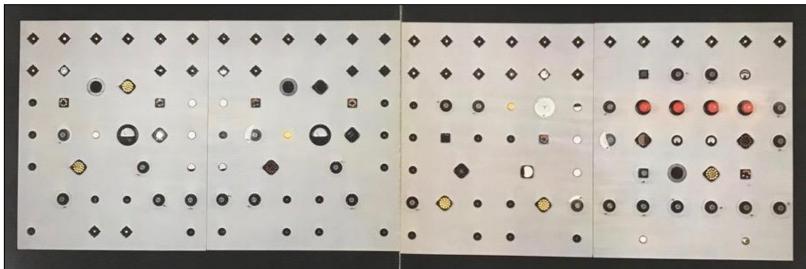
La SNCF et le ³H

Viseurs (de carabine) au ³H

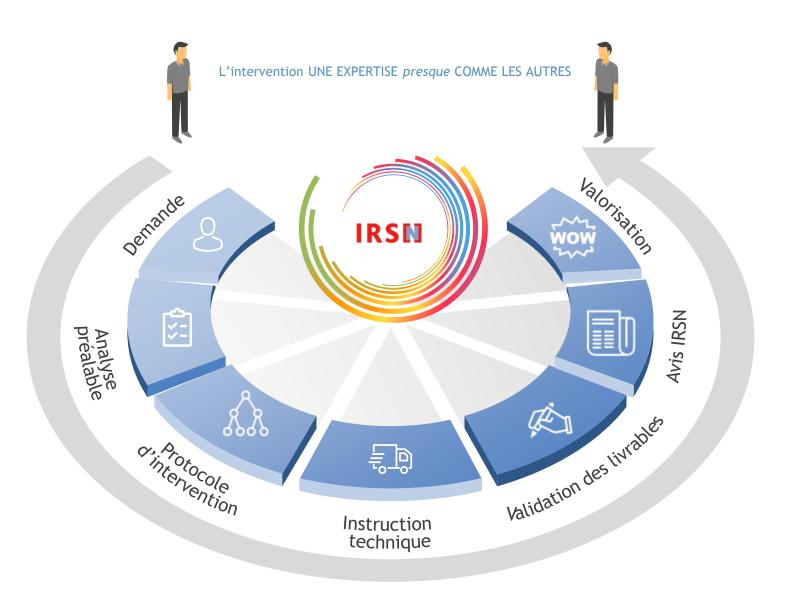
Des objets du quotidien

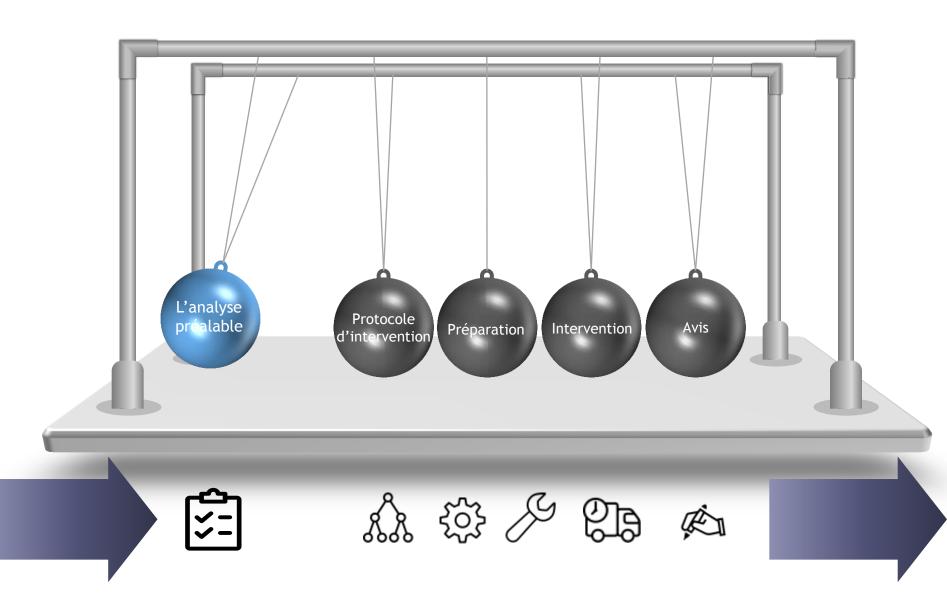
Une lampe de camping Une boule de lavage/séchage Corsaire/boxer à la Tourmaline

Des objets décoratifs

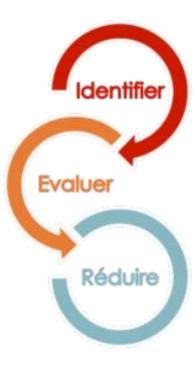

Une coiffe indienne décorée avec des éléments de montre (³H- ²²⁶Ra)

Une carpe « fluorescente »


Email de Limoges


Takis

La démarche d'expertise


De l'analyse préalable au protocole d'intervention

Maîtrise des risques

- Risque radiologique pour les intervenants,
- Autres risques technologiques/classiques pour les intervenants,
- Risque sociétal et médiatique.

→ ANALYSE DE RISQUES dans un contexte avec des incertitudes fortes : étude de scénarios dégradés et anticipation des solutions techniques à mettre en place

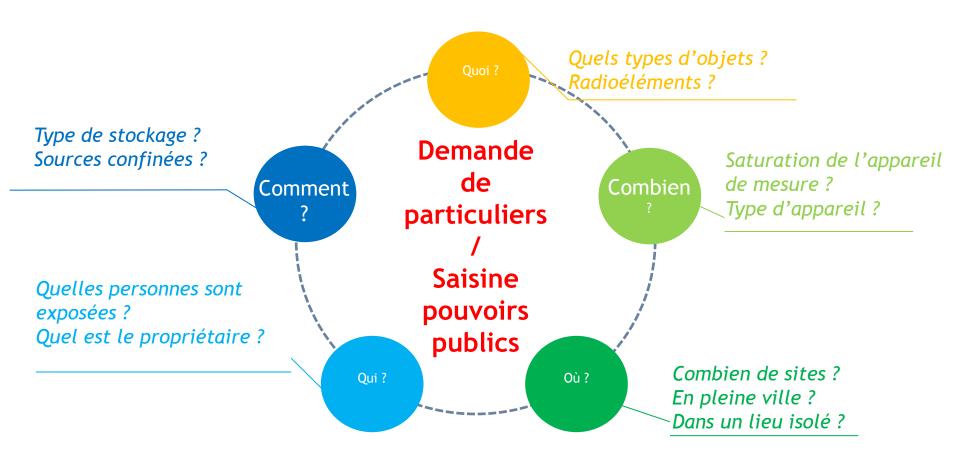
\$-

De l'analyse préalable au protocole d'intervention

δ

Préparation « au bureau »:

- Recueil des informations fournies par le client,
- Recherches bibliographiques (interne IRSN et externe),
- Détermine les besoins en termes de qualifications des intervenants (administratives et qualitatives).


Visite préalable:

- Identification des locaux et des sources à expertiser,
- Réflexion sur la faisabilité de la mise en œuvre des différents postes de travail (prise cotes, comptage frottis, spectrométrie).

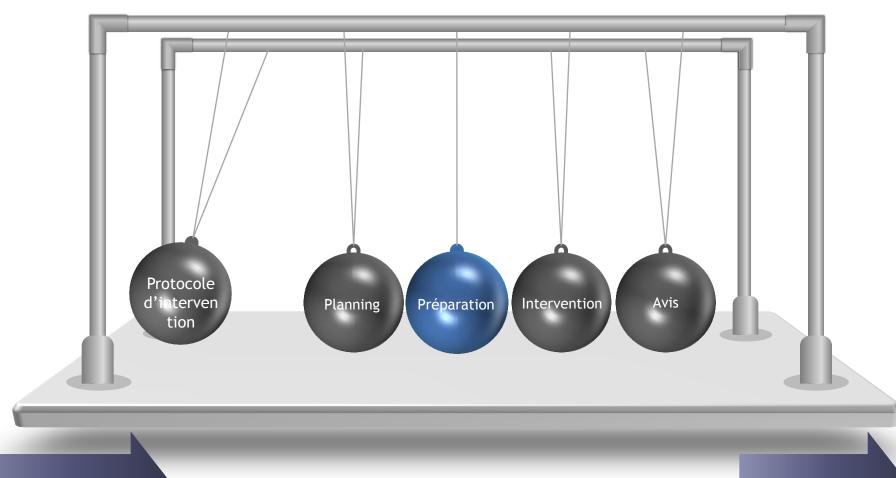
Compilation des informations disponibles

- 7 Peu d'informations techniques disponibles en vue de préparer l'intervention
- 7 Un délai extrêmement court pour préparer les interventions

7 Protocole: les grandes phases de l'intervention

<u>Etape 1</u>: état des lieux initial du ou des locaux d'intervention (stockage sources et expertise)

Etape 2 : définition des conditions d'intervention dans les locaux (organisation dans les locaux de travail en matière de RP et moyens employés)


<u>Etape 3</u>: l'opération et les éventuels points d'arrêt (en particulier si contamination source ou emballage)

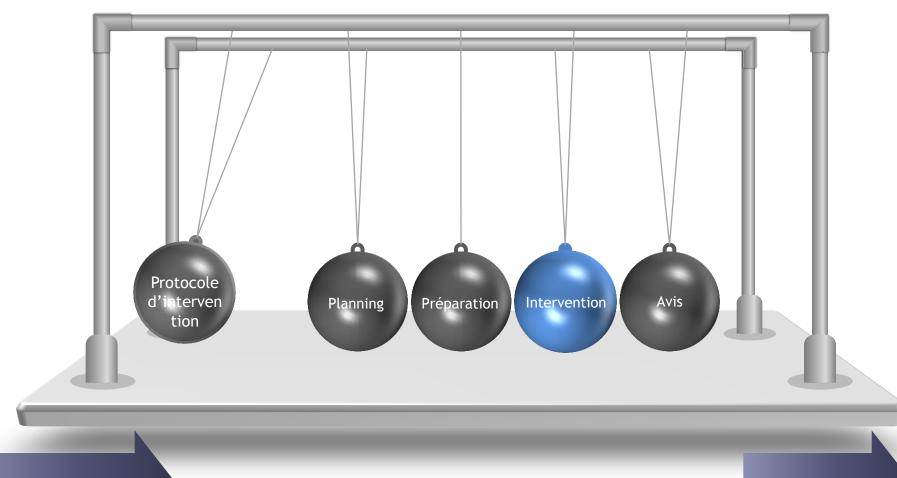
Etape 4 : mise en sécurité des sources (local de stockage en attente enlèvement ou évacuation)

Etape 5 : état des lieux final de l'ensemble des locaux

- En cours d'intervention : Adaptation des différentes étapes en fonction du risque
 - Gestion de la communication / parties prenantes
 - Ajustement des choix techniques :
 - choix des EPI,
 - répartition des tâches au sein des intervenants

Objectif:

- Définir un calendrier (analyse préalable, protocole, intervention, avis)
- Définir la composition de l'équipe
- Identifier le matériel à emporter, vérifier son bon fonctionnement



Etape 1: Etat des lieux radiologique

Objectif: Evaluer les risques (exposition externe, exposition interne (ex:radon)) pour les intervenants

<u> Méthode</u> :

- Mesure de la contamination atmosphérique
- Mesure du débit d'équivalent de dose dans les locaux
- Mesure de la contamination surfacique

- Point d'arrêt : Adaptation des EPI
- Préalable à la cartographie radiologique des locaux

Etape 2 : choix des équipements des intervenants

Objectif: Limiter le risque d'exposition pour les intervenants

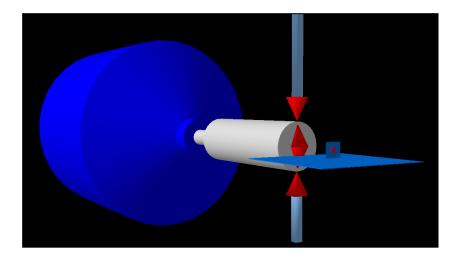
- Face à l'absence d'informations, utilisation des EPI les plus complets
- Adaptation au fur et à mesure de l'obtention de données radiologiques

Etape 3 : Caractéristiques de la source

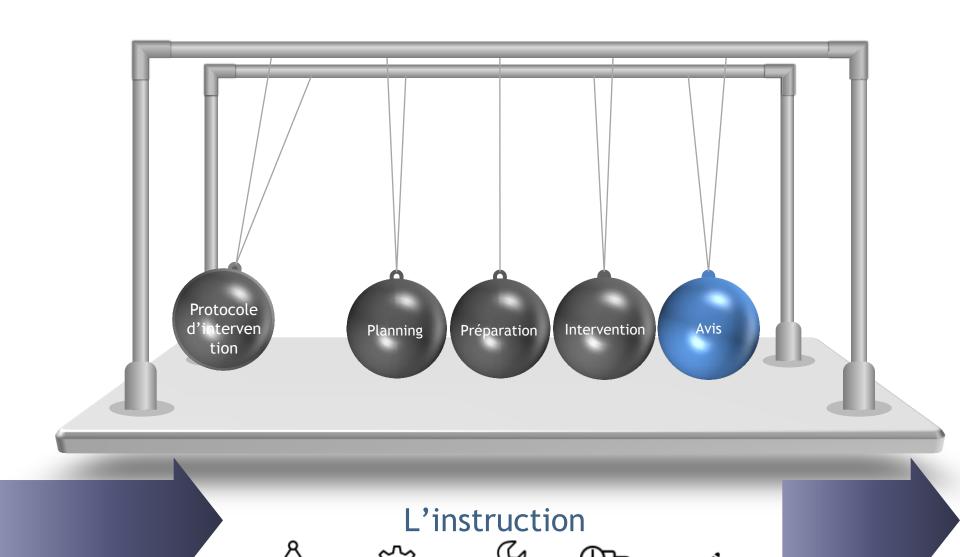
Objectif: Disposer des informations nécessaires pour déterminer le ou les radioéléments composant la source et son activité à la date de l'intervention et ses caractéristiques (dimensions, masse,...)

<u> Méthode</u> :

- Mesure de la contamination surfacique de la source et de ses emballages
- Mesure du débit d'équivalent de dose à différentes distances de la source
- Lecture des informations présentes sur la source
- Prise de cotes et masse


Etape 4 : Spectrométrie gamma

- Objectif: Quantification et qualification de la source
- Méthode:
 - Obtenir le ou les radioéléments composant la source
 - Obtenir l'activité de chacun grâce à la modélisation de la source


Etape 4 : Spectrométrie gamma

Objectif: Quantification de l'activité la source

- Méthodes de détermination de l'activité du radionucléide :
 - Décroissance radioactive
 - Débit de dose à différentes distances (débits de dose faible)
 - Spectrométrie gamma (hypothèses de composition de la source, prise de côtes)

Objectif: Rédaction d'un rapport et/ou de PV de sources

- Donne le ou les radioéléments composants la source
- Donne l'activité de chacun à la date d'intervention
- Donne le maximum d'informations disponibles sur la source
- Contient l'ensemble des justifications concluant au résultat
- Présente la position de l'IRSN et les recommandations émises à l'attention des pouvoirs publics ou du client, le cas échéant.

Analyse Préalable > Instruction > Avis

Exemple de PV:

PROCES VERBAL

DE CONTRÔLE D'UNE SOURCE SCELLEE

Date du contrôle : 29/06/2018 N° de PV : xxx Entreprise : lambda Lieu : ailleurs

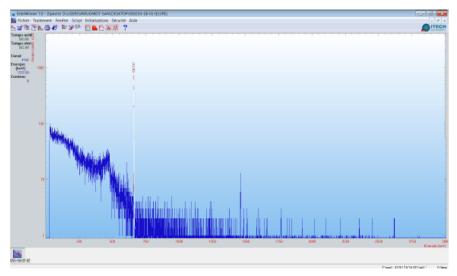
DESCRIPTIF 137 Cs RADIONUCLEIDE: ACTIVITE (Bq): 6,85.103 DATE: 29/06/2018 EMETTEUR: alpha béta gamma ou X neutron **DESCRIPTION:** DIMENSIONS (mm): Hauteur = 25; Diamext = 30; N° IRSN: Sans MASSE: 14,2 g NATURE DU SUPPORT SOURCE : filtre papier N° SOURCE : S.O. Réf. CATALOGUE : inconnue DOCUMENT: S.O. FABRICANT: inconnue REPRENEUR: xx

APPAREILS UTILISÉS POUR LE CONTRÔLE (préciser : type d'appareil ; n° de la sonde ; date d'étalonnage) RADIAMETRE γ : Sonde Bas Flux n°93891 – avril 2018 + AD6 n°96892 – septembre 2017 SPECTROMETRIE : Detective Ortecmod. DETDX 7170 – n°081697170 - octobre 2017 CONTAMINAMETRE : Chaîne de comptage α, β de type LUDLUM3030P n° 319845 – septembre 2017

<u>RESULTATS</u>				
EXPOSITION EXTERNE (μ Sv/h, mesure brute): $ddd_{pseudo\ contact} = 0.5$; $ddd\ à\ 10cm = 0.10$; $ddd\ à\ 20cm = 0.06$;				
CONTAMINATION: FROTTIS SEC FROTTIS HUMIDE (CRITERE DE CONFORMITE : < 0,4 Bq.cm² en a et < 4 Bq.cm² en β)				
SOURCE CONFORME ☐ SOURCE NON CONFORME				
OBSERVATIONS:				

NOM ET VISA DU CONTROLEUR:

NOM ET VISA DU VERIFICATEUR:



PROCES VERBAL DE CONTRÔLE D'UNE SOURCE SCELLEE

N° de PV : xxx

Analyse par spectrométrie gamma de la source



identification		Source « Exploranium »	
date de comptage		29/06/2018 11:45:04	
durée comptage (h)		00:11:00	
famille naturelle	radionucléide	A (Bq)	U _A (Bq)
	¹³⁷ Cs	6,85E+03	5,43E+02

Observation:

Identification de la raie d'émission gamma caractéristique du Césium 137.

Jean-Claude MOREAU ...

