

Arnaud Chapon*, Gabriel Dupont *achapon@atron.fr

- Métrologie des rayonnements ionisants
- Vérification de l'étalonnage de radiamètres
- Premiers résultats après six mois d'exploitation

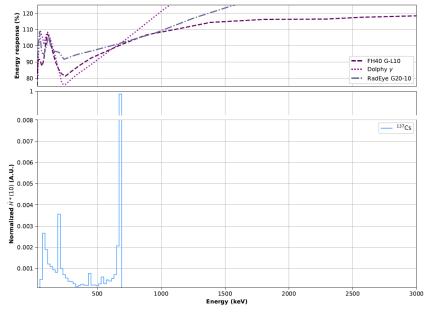
Métrologie des rayonnements ionisants

Contrôles réglementaires

- CPE tous les 3 ans
- CP tous les ans

Méthode usuelle

- Source radioactive (¹³⁷Cs)
- Débit de dose


 1/distance²

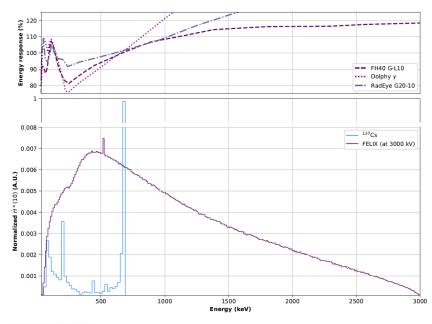
Inconvénients

- Renouvellement de la source
- Spectre discret
- Faible productivité

ACCELERATEUR DE VOS AMBITIONS PRESENTATION NUMERO : Congrès SFRP | 19.06.19

3

Métrologie des rayonnements ionisants

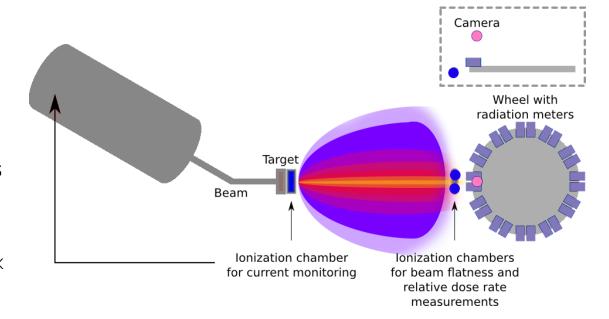

Méthode développée par ATRON

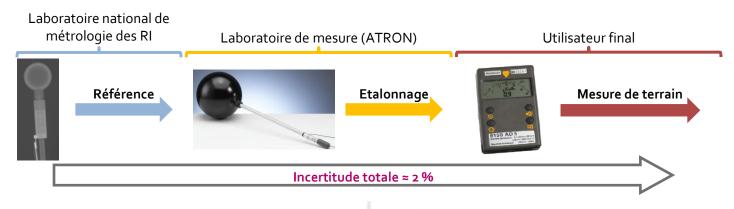
- Accélérateur d'électrons
- Emission de rayonnement de freinage
 = photons (~MeV)
- Spectre en énergie continu
- Pas de source radioactive

Avantages

- Champ d'irradiation réaliste
 (à 1.25 MeV, 2 MeV ou 3 MeV)
- Débit de dose ∝ courant du faisceau
- Automatisation

Métrologie des rayonnements ionisants





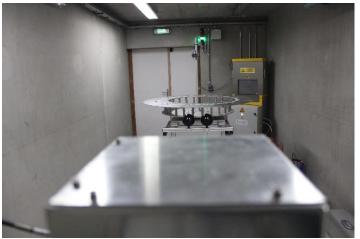
Détermination de la valeur de référence du champ de RI:

- mesure de la grandeur physique, K_{air}
- 2. mesure spectrométrique des champs d'irradiation,
- détermination des coefficients de conversion h_K tels que H = h_K . K_{air}

Vérification de l'étalonnage de radiamètres

1. Identification des instruments

QR code unique par instrument


2. Positionnement des instruments

Placement des instruments sur des gabarits adaptés

3. Déroulement de la séquence d'irradiation

- Energie adaptée aux modèles d'instruments
- Vérification de la réponse des instruments à 20%, 50% et 80% de chaque gamme

Vérification de l'étalonnage de radiamètres

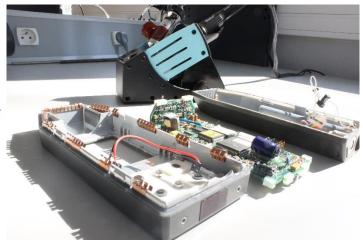
Analyse des paramètres d'irradiation

- Relevé des valeurs des instruments
- Débits de $H^*(10)$ de référence
- Corrections d'environnement (T, P, H)

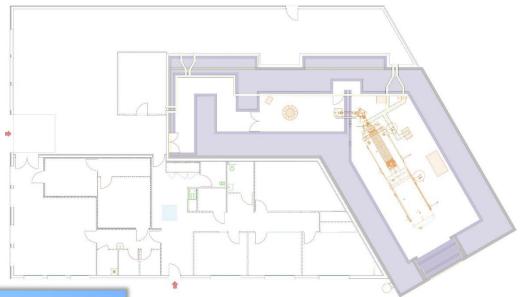
Maintenance des instruments

- Diagnostic / réglages
- Nouveau contrôle

6. Retour des instruments


- Edition du constat
- Pose de l'étiquette de conformité

Vérification de l'étalonnage de radiamètres



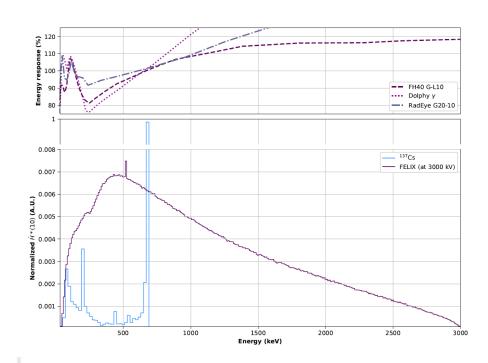
Inauguration en avril 2018

- 700 m²
- 2,10 m de protections biologiques autour de la salle d'irradiation et de la salle accélérateur

Installation FELIX
Atelier de maintenance
Zone de gestion des
appareils contaminés

Premiers résultats après six mois d'exploitation

480 instruments vérifiés à ce jour


- o 19 balises,
- o 22 sondes,
- 439 radiamètres.

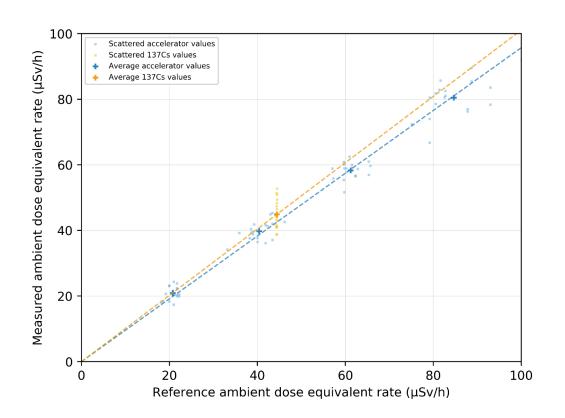
Temps de traitement moyen par ATRON

- ~5 min / instrument, analyse et validation incluses,
- la plupart des radiamètres vérifiés sous deux jours,
- temps d'immobilisation dominé par la maintenance.

Correction k_{Cs} telle que $k_{Cs} = H_{Cs} / H_{FELIX}$

- o 6150 AD5/H
- Dolphy Gamma | Dolphy Evo
- o FH40G-L10

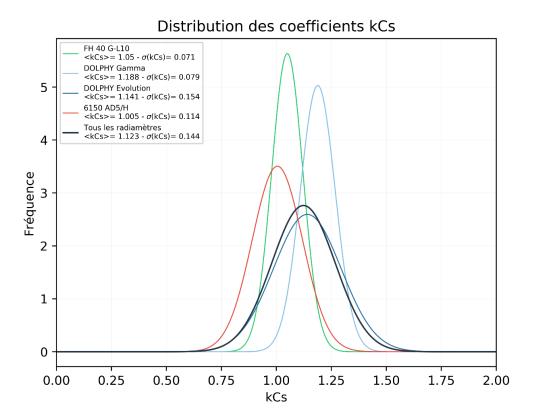
Premiers résultats après six mois d'exploitation



Correction k_{Cs} telle que k_{Cs} $= H_{Cs} / H_{ATRON}$

- Réponse 1. l'instrument à 20, 40, 60 et 80 μ Sv/h (FELIX)
- Régression linéaire
- Comparaison réponse à 45 μSv/h (137Cs)

Premiers résultats après six mois



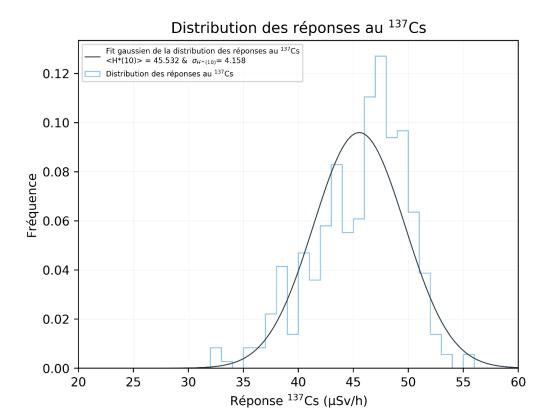
d'exploitation

Correction k_{Cs} telle que k_{Cs} $= H_{Cs} / H_{ATRON}$

- Réponse de 1. l'instrument à 20, 40, 60 et 80 μ Sv/h (FELIX)
- Régression linéaire
- Comparaison 3. réponse à 45 μSv/h (137Cs)

$$\rightarrow$$
 < k_{Cs} > = 1.12

Premiers résultats après six mois



Distribution de la réponse des instruments à la source de 137Cs:

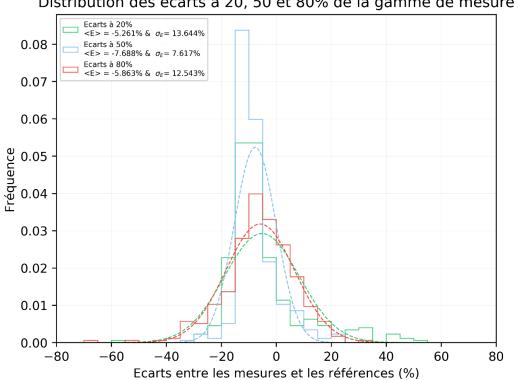
95.7% des réponses des instruments dans l'intervalle [-20%;+20%] autour de la valeur de référence

→ Défaillance = 4.3%

91.5% conformes ~40 μSv/h (ATRON)

Inhomogénéité réponse en énergie = 4.2%

Premiers résultats après six mois d'exploitation



Distribution des écarts à 20, 50 et 80% de la gamme de mesure

Répartition des réponses en fonction du debit de dose:

 $\sigma = 13.6\% \text{ à } 20\%$

 $\sigma = 7.6\% \text{ à } 50\%$

 $\sigma = 12.5\% à 80\%$

- Réponse fidèle des instruments en milieu de chaque gamme,
- → Fortes fluctuations à bas et haut débits.

Premiers résultats après six mois d'exploitation

Sources de non-conformité

- Défaillance = 4.3%
- Inhomogénéité de réponse en énergie = 4.2%
- Réponse à bas flux (20% de la gamme) = 14,1%
- Réponse à haut flux (80% de la gamme) = 11.0%

Sur toute la gamme des instruments, à 20%, 50% et 80% en spectre étendu

- 344 instruments (6150 AD5/H | Dolphy Gamma | Dolphy Evo | FH40G-L10)
- > 74.4% instruments conformes

Premiers résultats après six mois d'exploitation

Méthode validée

- ✓ Traçabilité du raccordement des qualités de faisceau aux références internationales, assurance qualité,
- 480 instrument déjà vérifiés,
- ✓ Automatisation des séquences d'irradiation, fiabilité des résultats.

Bénéfice métrologique

- ✓ Adaptation du spectre en énergie (1.25 MeV, 2.00 MeV, 3.00 MeV) à l'étendue de mesure des instruments,
- ✓ Adaptation des débits de dose (20%, 50%, 80%) à chaque gamme de H*(10) des instruments.

Bénéfice environnemental

✓ Absence de source radioactive.

L'OPTIMISATION PAR L'INNOVATION

Stand #16

www.atron.fr