IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Utilisation des mesures de l'environnement pour évaluer les rejets atmosphériques émis lors d'un accident nucléaire. Application à l'accident de Fukushima

### O.SAUNIER, <u>A.MATHIEU</u>, D.DIDIER, M.TOMBETTE, D.QUELO, M.BOCQUET, V.WINIAREK

Anne.mathieu@irsn.fr





# **Rôle de l'IRSN en cas d'urgence radiologique**

- Estimer les risques induits par la situation accidentelle
- Fournir une expertise technique aux autorités

# **Devoirs**

- Evaluer l'état des réacteurs, les rejets à l'atmosphère
- Estimer les conséquences radiologiques (doses, dépôts)
- Analyser les mesures dans l'environnement



# Modèle de dispersion atmosphérique en mode direct

Diagnostic-Pronostic des conséquences d'un accident Opérationnelle

Données d'entrée

- Champs météorologiques
- Le terme source (TS) : Pour chaque radionucléide, évolution temporelle des quantités émises



Une trop grande incertitude sur les rejets limite la compréhension du scénario de contamination et l'estimation de l'impact sur les populations.



# Modèle de dispersion atmosphérique pour la modélisation inverse

**Techniques développées depuis Tchernobyl:** combine modélisation de la dispersion atmosphérique et mesures dans l'environnement pour estimer des paramètres inconnus

- <u>Reconstruction du TS</u> Quasi-opérationnelle
- Reconstruction du TS et de la position de la source *Recherche*
- Estimation des paramètres physiques Recherche





# Le problème inverse



#### **D** Objectif : estimer le TS $\sigma$ qui minimise l'erreur $\epsilon$

Minimisation de la fonction de coût (utilisation algorithme L-BFGS-B)

$$J(\sigma) = \frac{1}{2} \left( \mu - H\sigma \right)^T R^{-1} \left( \mu - H\sigma \right) + \frac{1}{2} \left( \sigma - \sigma_b \right)^T B^{-1} \left( \sigma - \sigma_b \right)$$

Hypothèses

- Position de la source connue
- Nombre de mesures doit être suffisant par rapport au nombre d'inconnus

#### Les mesures pendant l'accident de Fukushima

| • Activité Volumique                                        | Obs.                  | +                                                                            | -                                                                                                                                |
|-------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Débit de Dose</li> <li>Dépôt journalier</li> </ul> | Activité<br>Volumique | Facile à utiliser<br>(Paramètre du<br>modèle &<br>Composition<br>Isotopique) | Nombre & Fréquence (Très<br>peu de données &<br>Moyennées sur une période<br>de temps)                                           |
| F                                                           | Dépôt                 | Facile à utiliser<br>(Paramètre du<br>modèle &<br>Composition<br>Isotopique) | Nombre & Fréquence<br>(Très peu de données &<br>Intégrées sur une période<br>de temps)                                           |
|                                                             | Débit de<br>dose      | Nombre &<br>Fréquence                                                        | Difficile à utiliser (Pas un<br>paramètre du modèle &<br>Agrège toutes les émissions<br>gamma présentes au sol et<br>dans l'air) |

Originalité de l'approche : utilisation des mesures de débit de dose (70 stations pour le TS entre le 11 et le 27 mars).



## Mesures de débit de dose



Comment utiliser le signal ?

- Détection du panache qui passe sur une station périodes de rejet.
- Pente due à la décroissance radioactive du dépôt Composition isotopique
- Intensité du débit de dose partités rejetées.



Une méthode en deux étapes

- □ <u>Etape 1</u> : Estimation des périodes potentielles de rejet
- <u>Etape 2</u>: Estimation des débits de rejets de chaque radionucléide sur les périodes identifiées en Etape 1.



# **Etape 1: Modélisation inverse pour estimer les périodes potentielles de rejet**

Mesures: extraction panache de 70 stations de débit de dose





Une nouvelle méthode appliquée au cas Fukushima

# Etape 2: Modélisation inverse pour estimer les débits de rejet pendant les périodes identifiées Etape 1

<u>Mesures</u>: Débit de dose complet des 70 stations

Contraintes sur les rapports isotopiques



# **Comparisons avec d'autres TS**

| Terme source (PBq)     | <sup>133</sup> Xe | <sup>131</sup> | 132  | <sup>137</sup> Cs | <sup>136</sup> Cs |
|------------------------|-------------------|----------------|------|-------------------|-------------------|
| TS Inverse             | 12100             | 103            | 35.5 | 15.5              | 3.7               |
| Mathieu et al. (2012)  | 5950              | 197            | 56.4 | 20.6              | 9.8               |
| Winiarek et al. (2012) | -                 | 190-380        | -    | 12-19             | -                 |
| Terada et al. (2012)   | -                 | 150            |      | 13                | -                 |
| Stohl et al. (2012a)   | 13400-20000       | -              | -    | 23.3-50.1         | -                 |
| TEPCO (2012)           | 500               | 500            |      | 10                |                   |

- Consistant avec les autres TS.
- TS Inverse : probablement trop de gaz rares et pas assez d'<sup>132</sup>I



# **Comparaison modèle-mesures**

# Débit de dose - composante panache



12



Bon accord modèle-mesures.

- Des pics supplémentaires sont identifiés par la méthode inverse.
- Les écarts aux mesures sont principalement dus aux erreurs dans les données météo.



Bon accord modèle-mesures.

Des pics supplémentaires sont identitifés par la méthode inverse.

Les écarts aux mesures sont principalement dûs aux erreurs dans les données météo.

### La composition isotopique est-elle réaliste ?

### Dépôt total Cs-137+ Cs-134 (non utilisé dans l'inversion)



- Lobe NW : le TS permet de le reconstituer.
- Accord loin d'être parfait localement (Tochigi et à l'ouest de la préfecture Fukushima).
- Les écarts sont principalement dus aux erreurs dans les champs météo (précipitations, vent) et aux modèles de dépôt mis en œuvre.



- Méthode inédite pour estimer le terme source d'un accident à partir des mesures de débit de dose
- Performances Bons résultats obtenus sur le cas de l'accident de Fukushima

### Limitations

- Nécessite une bonne couverture spatio-temporelle du territoire par les mesures des mesures de qualité disponibles rapidement
- □ Très dépendant de la qualité des données météo
- □ Ne renseigne pas un rejet si il n'est pas mesuré (cf. rejet vers la mer)

## Utilisation

Méthode parfaitement adaptée à la gestion de crise

## **Perspectives**

- □ Utilisation conjointe d'autres types de mesure (activités volumiques, dépôt).
- □ Extension de la méthode au multi-échelles : du local à l'hémisphérique.



### Les méthodes de l'IRSN





- Méthode pour estimer les émissions à partir des mesures d'activité volumique
  - 2011-2012 Détection par plusieurs pays d'Europe Centrale d'<sup>131</sup>l à l'état de trace provenant de Hongrie (usine de production d'isotopes)
  - 2013 Détection d'une élévation anormale de <sup>137</sup>Cs en Scandinavie provenant de Russie
- **7** Méthode pour estimer les émissions à partir des débit de dose



# Merci



### La composition isotopique est-elle réaliste ?



19