L'uranium appauvri : expositions et doses reçues sur le champ de bataille

Michael Bailey, Katie Davis, Alan Phipps, Tracy Smith National Radiological Protection Board Royaume-Uni

www.royalsoc.ac.uk/policy/du.htm

Historique (fin 1999)

Inquiétude du public concernant les effets possibles sur la santé de l'uranium appauvri dans les armes, qui est radioactif et toxique

Rapports de maladies parmi les vétérans britanniques de la Guerre du Golfe, peut-être liées à l'exposition à l'uranium appauvri

A-t-elle été utilisée dans les Balkans?

Champs de tirs de munitions à l'uranium appauvri dans la région du Cumbria et en Ecosse

Incendie dans une usine de munitions à l'uranium appauvri à Featherstone (février 1999)

Chutes d'avions lestés à l'uranium appauvri (Boeing 747s à Lockerbie et à Stansted)

A l'initiative de la Royal Society, et non du gouvernement britannique

Risques pour la santé des munitions à l'uranium appauvri

1ère partie:

- Risques radiologiques
 - Evaluer l'incorporation d'uranium appauvri
 - Calculer les quantités dans les organes et les doses
 - Calculer les risques au niveau des organes
 - Calculer l'excédent de cancers dans la population
- Etudes sur le long terme de la santé des travailleurs exposés à l'uranium

2ème partie:

- Toxicité chimique
- Aspects liés à l'environnement, y compris les risques pour les populations civiles
- Réponses à la 1ère partie

Evaluation de l'incorporation de l'uranium appauvri (milligrammes) :

Difficile, quelle quantité de fumée les soldats pourraient-ils inhaler ?

- A priori très variable
- Peu d'informations disponibles
- Les membres du Groupe de Travail ne sont pas des experts des champs de bataille

Evaluer les concentrations au niveau du rein et les doses :

Relativement simple

- Connaissances détaillées sur l'inhalation de l'uranium
- Modèles CIPR récents pour les poumons et l'uranium
- Modèles incorporés dans les codes de calcul du NRPB

Documents sources sur les aérosols d'impact

Rapport	Concentration massigue	DAM	Dissolution	Composition chimique
Rapports obtenus				
Hansen 1974	✓	\checkmark		
Glissmeyer 1979	✓	\checkmark	\checkmark	\checkmark
Patrick 1978		\checkmark		\checkmark
Chambers 1982	✓	\checkmark		
Scripsick 1985(a,b)			\checkmark	\checkmark
Brown 2000	✓	✓		
Rapports non obtenus	/OS4GW/ 2000	Tah L)		
	√ √	Tub L) ✓		
Gilchrist 1979		· ·		
Fliszar 1989	V			
Jette 1989	<u>√</u>		√	
Parkhurst 1990	√	√	√	

Aérosols produits par les impacts de pénétrateurs en uranium appauvri

Rapport	Concentration massique (mg m ⁻³)	Proportion du pénétrateur en aérosol (%)
Obtenus		
Hansen 1974	70–1700	0,25
Glissmeyer 1979	8–35	70
Chambers 1982	130	3 (1,5–5)
Brown 2000	13–60	
OSAGWI 2000, Tab	Ĺ	
Gilchrist 1979	>0,3 pendant 5 min	17–28
Fliszar 1989	44 400 (intérieur char)	8,5
Jette 1989		<10 (0,02 - 0,5)
Parkhurst 1990		<10

Granulométrie des aérosols produits par les impacts de pénétrateurs en uranium appauvri

Rapports	MMAD, ì m	Fraction respirable (%)
Obtenus		
Hansen 1974	2,1 - 4,2	42 – 64
Glissmeyer 1979	0.8 - 3.1	51 – 70
Chambers 1982	1,6 (1,4 – 2,0)	~70
Brown 2000	3,7(1,1-7,5)	
OSAGWI 2000, Tab L		
Gilchrist 1979	2,1	

Composition chimique (analyse aux rayons X) des particules produites par les impacts de pénétrateurs en uranium appauvri

Rapports	Amorphe (%)	UO ₂ (%)	U ₃ O ₈ (%)
Glissmeyer 1979		25	75
Scripsick 1985	_	60 (filtre à air, total)	40
	20	18 (filtre à air, respirable)	62
	_	97 (échantillon noyau, total)	3
	_	54 (échantillon noyau,	46
		respirable)	

Dissolution (in vitro) de particules provenant d'impacts de pénétrateurs en uranium apprauvri

Rapports	Partie rapidement dissoute (%)	Taux de dissolution de la partie lente d ⁻¹
Obtenus		
Glissmeyer 1979	43 (34 – 49) respirable	<0,01
	15 (11 – 18) total	<0,01
Scripsick 1985	25 (filtre à air) respirable	0,0014
	4 (échantillon noyau) respirable	0,004
OSAGWI 2000, Tak) <u>L</u>	
Jette 1989	24 - 43 "Classe D"	<u> </u>
Parkhurst 1990	17 "soluble"	<u> </u>

Aérosols produits par la combustion d'uranium

- Trois documents utiles
- Proportion en aérosol < 1 %
- Proportion respirable < 1 %
- ~ 100 % U₃O₈
- Proportion soluble ~ 5 %

Evaluation des expositions à l'uranium appauvri

Problème : Peu de mesures disponibles des concentrations dans l'air ou dans les tissus

Démarche : définir un ensemble de scénarios, puis estimer les concentrations dans l'air en utilisant :

- Les résultats d'essais de pénétrateurs, la proportion entrant en aérosol
- Les modèles de dispersion et de remise en suspension
- Le jugement (d'expert ?)

Niveau I (Elevé) : Dans un véhicule frappé par un pénétrateur en uranium appauvri

Inhalation de l'aérosol produit par l'impact Eclats encastrés d'uranium appauvri

Niveau II: (Moyen) Travaux sur véhicule contaminé

inhalation de poussières sur le véhicule remises en suspension

Ingestion:
transfert de la
main à la bouche
à partir de
surfaces
contaminées

Niveau III (Faible) sous le vent, près d'impacts, d'incendies, etc.

Entrée dans véhicules contaminés, comme le niveau II, mais moins longtemps

Inhalation de fumée apportée par le vent lors d'impact(s) ou d'incendie(s), pendant le combat

Inhalation de poussières remises en suspension

Pour chaque scénario, deux évaluations sont réalisées :

« Réaliste »

Valeur moyenne représentative utilisant les valeurs les plus probables des paramètres. Moyenne pour le groupe exposé

« Enveloppe »

Utilisation des valeurs aux limites de la gamme probable pour chaque paramètre. Peu de probabilités qu'un *individu* excèdera la valeur enveloppe. NE s'applique PAS à l'ensemble du groupe exposé pour l'évaluation de l'excès de cancers. Utiliser pour déterminer les priorités pour les études complémentaires

Synthèse des incorporations estimées (mg)

Niveau	Voie	Source	Réaliste	Enveloppe
	inhalation	aérosol d'impact	250	5000
II	inhalation	remise en suspension dans véhicule	10	2000
II	ingestion	dans véhicule	5	500
III	inhalation	remise en suspension dans véhicule	1	200
III	ingestion	dans véhicule	0,5	50
III	inhalation	fumée d'impacts	0,07	5
III	inhalation	fumée d'incendies	0,05	2
III 	inhalation	remise en suspension de dépôts sur sol	0,8	80

Doses efficaces estimées (mSv)

Niveau	Voie	Source	Réaliste	Enveloppe
1	inhalation	aérosol d'impact	22	1100
Ш	inhalation	remise en suspension dans véhicule	0,5	440
II .	ingestion	dans véhicule	0,0005	0,3
III	inhalation	remise en suspension dans véhicule	0,05	44
III	ingestion	dans véhicule	0,00005	0,03
III	inhalation	fumée d'impacts	0,004	2,8
III	inhalation	fumée d'incendies	0,004	1,2
III	inhalation	remise en suspension de dépôts sur sol	0,03	18

Doses engagées (Sv) au niveau des organes provoquées par l'inhalation d'1 mg d'uranium appauvri dans un véhicule contaminé

	Valeu	ırs réali	Valeurs enveloppes	
Temps après incorporation	1	5	50	50
Tissu				
Surfaces osseuses	2,6	6,5	16	13
Rein	2,3	3,9	6,0	4,9
Moelle osseuse rouge	0,30	0,78	1,7	1,4
Voies respiratoires extrathoraciques	190	360	370	310
Poumons	320	350	370	1800
LN _{ET}	7,8	57	83	550
LN _{TH}	67	260	340	19,000
Dose efficace	39	51	52	220

Concentration maximale estimée (µg U) par gramme rein

Niveau	Voie	Source	Réaliste	Enveloppe
1	inhalation	aérosol d'impact	4	400
II	inhalation	remise en suspension dans véhicule	0,05	96
II	ingestion	dans véhicule	0,003	3
Ш	inhalation	remise en suspension dans véhicule	0,005	10
III	ingestion	dans véhicule	0,0003	0,3
III	inhalation	fumée d'impacts	0,0009	0,6
III	inhalation	fumée d'incendies	0,00012	0,05
Ш	inhalation	remise en suspension de dépôts sur sol	0,003	4

2ème partie : Toxicité chimique

Etablir un lien entre le niveau de concentration d'uranium et les lésions rénales chez l'homme

Identifier et étudier des cas de lésions rénales provoquées par l'uranium (spécialistes en toxicologie chimique) :

- Dame Barbara Clayton (Université de Southampton)
- Dr Virginia Murray, Dr Robie Kamanyire (Guys and St Thomas' Hospital, Londres)

Estimer la concentration dans le rein avec les modèles de la CIPR :

Michael Bailey, Katie Davis (NRPB)

Expositions de l'homme à l'uranium : aiguës

Voie d'incorporation	Forme chimique	Nombre de sujets	incorporation, mg U	ì g U par gramme de rein	Effet	Référence
Ingestion	Acétate	1	8500	100	+++	Pavlakis 1996
Brûlure dermique	Nitrate	1	130	35	+++	Zhao 1990
Inhalation	UF ₄	1	900	10	++	Zhao 1990
Injection	Nitrate	2	10	5	++	Luessenhop 1958
Brûlure dermique	Nitrate	1	10	3	++	Butterworth 1955
Inhalation	Concentré de minerai		200	3	_	Boback 1975
Injection	Nitrate	3	5	2	+	Luessenhop 1958
Inhalation	UF ₆	3	50–100	1–3	+	Kathren 1986
Ingestion	Nitrate	1	470	1	+	Butterworth 1955
Inhalation	UF ₆	1	20	1	_	Boback 1975

Symptômes cliniques sévères +++

Indicateurs biochimiques de dysfonctionnement rénal: ++ Prolongé +Transitoire -Absence de symptôme

Expositions de l'homme à l'uranium : chroniques

Voie d'incorporation	Forme chimique	Nombre de sujets	ì g U par gramme de rein	Effet	Référence
Inhalation	Yellowcake	27	Proche de ~1	++	Thun 1985
Intramusculaire	Uranium métal	15	Proche de ~0.5	_	Hooper 1999
Ingestion	Eau de boisson	30	Proche de ~0.1	++	Limson Zamora 1998

Indicateurs biochimiques de dysfonctionnement rénal: ++ Prolongé - Absence de symptôme

Conclusions

Dans la plupart des cas (valeurs réalistes), il est probable que :

- l'incorporation soit < 10 mg d'uranium appauvri
- les doses efficaces engagées soient < 1 mSv
- les concentrations rénales soient << 3 g U par gramme

La variabilité et les incertitudes sont grandes. On ne peut exclure que, dans un petit nombre de cas (surtout celui de soldats se trouvant dans les véhicules frappés par des projectiles à l'uranium appauvri) :

- l'incorporation pourrait être > 1 gramme d'uranium appauvri
- les doses efficaces engagées pourraient être > 1 Sv
- les concentrations rénales pourraient être > 30 g par gramme

Des informations complémentaires sont nécessaires, en particulier celles concernant :

- La concentration dans l'air en fonction du temps passé à l'intérieur et autour des véhicules frappés
- La remise en suspension dans des véhicules contaminés

