Sensibilité vis-à-vis des fortes doses:

prise en compte de la radiosensibilité dans les protocoles thérapeutiques

Jean-Marc COSSET, David AZRIA

Sommes-nous tous égaux devant les rayonnements ionisants?

- La réponse est clairement : NON !
- Un très faible pourcentage de sujets dans la population générale,
- Et un pourcentage probablement plus important de patients cancéreux
- Présentent une Hypersensibilité aux Radiations ionisantes

En pratique, on peut opposer:

- L'hypersensibilité aux effets stochastiques (essentiellement carcinogènes)
- L'hypersensibilité aux effets déterministes
- Mais les deux phénomènes peuvent coexister, une même cause biologique (par exemple un défaut de réparation de l'ADN) étant susceptible d'augmenter tout à la fois le risque de cancer radio-induit et d'effets déterministes sévères ...

Un document de base :

- La publication N°79 de la CIPR :
- « Genetic susceptibility to cancer »
- Le titre souligne bien que le primum movens est une susceptibilité individuelle exposant à un risque accru de cancer (en particulier radio-induit) et également à un risque accru d'effets déterministes ...

Cette présentation :

- 1/ Syndromes ou pathologies associés à une hyper-radiosensibilité (JMC)
- 2/ Quel(s) test(s) d'hyperradiosensibilité en 2008 ? (DA)
- 3/ Quelles recommandations ? (DA-JMC)

Pathologies associées à une hyper-radiosensibilité

- Ataxia-telangiectasia
- Fanconi
- Prédispositions génétiques aux cancers
- Sclérodermie
- Patients séropositifs HIV
- Autres pathologies

- Syndrome décrit par Broder en 1958 :
- « Ataxia telangiectasia : a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent infection »
- On sait maintenant qu'il s'agit d'un syndrome génétique autosomique récessif
- Lié à une mutation du gène ATM (situé en 11q22-23 ; Savitsky 1995)

Il convient ici de distinguer:

- Les formes homozygotes
- Les formes hétérozygotes
 Pour lesquelles les problèmes se posent de façon très différente ...

- Les formes homozygotes :
- Extrémement rares : 1 cas sur 300.000 à 400.000 individus dans la population générale
- Associées à une augmentation considérable du risque de cancer associé

(essentiellement lymphomes - x 250 !- et cancers du sein)

- Les formes homozygotes :
- Considérées comme étant 3 à 4 fois plus sensibles aux effets déterministes que la population générale
- Corollaire: une dose bien tolérée par un patient « normal » peut tuer un patient homozygote pour Ataxia ...

 Les raisons de cette hyper-radiosensibilité majeure :

Pas encore totalement élucidées :

Combinaison probable de ;

- Altération de la « reconnaissance » des lésions radio-induites de l'ADN
- Défaut de réparation des lésions double brin
- Altération des « check points » du cycle cellulaire

(Foray 1997, Hoekstra 1997)

- Mutations ATM chez les patients ayant présenté un cancer radio-induit ?
- Deux études disponibles négatives :
- Van Leeuwen (1999) et Nichols (1999)
- « Heterozygotous germline ATM mutations do not contribute to radiationassociated malignancies after Hodgkin's disease »

(Nichols 1999)

En conclusion :

- Homozygotes Ataxia;
- Rarissimes
- Pathologie lourde, normalement déjà connue pour un patient donné; ne devrait donc pas poser problème: pas d'irradiation ou dose TRES réduites ...

- Hétérozygotes Ataxia ;
- Problème plus complexe ...
- Considérés il y a 10 ans comme étant LES formes hypersensibles observées chez nos patients cancéreux
- Une série d'articles n'a pas confirmé
- Mais a-t-on cherché les « bonnes » mutations ??
- Voir le travail de Tannuzzi (2002)
- A suivre!....

Fanconi

- Affection génétique récessive
- Rare: 1/20.000 dans la population générale
- Clinique : Anémie fréquemment associée à des troubles de la morphogénèse
- Evolution habituelle : anémie-myélodysplasie-leucémie aigue

Fanconi

- L'hypersensibilité aux radiations de ces patients est connue depuis les années 70
- Patients irradiés pour des cancers associés (dont le risque serait augmenté) ou par irradiation totale ou subtotale avant greffe de moelle ...
- On estime grossièrement que ces patients sont deux fois plus sensibles que la population générale

Fanconi

- Les raisons de cette hypersensibilité ?
- Depuis longtemps rapprochée de l'extrême fragilité chromosomique de ces patients, soit spontanée, soit après Mitomycine C
- Trouble de la réparation de l'ADN ?
- Voir Buchwald et Moustacchi, 1998 :
 « Is Fanconi Anemia caused by a defect in the processing of DNA damage? »

- L'exemple le plus spectaculaire ;
- Le Rétinoblastome héréditaire, où le risque de deuxième tumeur est beaucoup plus élévé que chez les formes sporadiques
- Mais ce risque est encore (beaucoup)
 plus élévé chez les patients irradiés ...

- Kleinerman, ASCO 1999:
- « Among the hereditary patients, we noted a significant 36.7-fold risk for second cancer after radiotherapy compared with ...a 7.3-fold risk for patients who did not receive radiotherapy... »
- « By the age of 50 years in the hereditary patients, the cumulative incidence of second cancers exceeded 58 % among RB patients who were irradiated ... »

 Parmi les autres prédispositions, BRCA 1 et BRCA 2 ont été particulièrement étudiés

 Ces deux gènes paraissent bien impliqués de façon étroite dans les processus de réparation de l'ADN ...

- Koonin 1996 : Domaines communs BRCA 1 et RAD 9
- Scully 1997: « BRCA 1 and BRCA 2 interact with hRAD 51 which is a key component of the DAN repair pathway »
- Sharan 1997: « Mouse embryo BRCA 2 -/are hypersensitive to ionising radiations »
- Connor 1997 : le test des comètes en condition neutre suggère un rôle de BRCA 2 dans la réparation des cassures double brin

- Patel 1998 : « Involvement of BRCA 2 in DNA repair »
- Zhang 1998: « BRCA 1, BRCA 2 and DNA damage response: collision or collusion? »
- Abbott 1998: « BRCA 2-defective cells were unable to repair the DNA double-strand breaks induced by ionizing radiation »
- Shen 1998: « Murine embryo carrying a BRCA nul mutation are ...hypersensitive to gamma-radiation »

- Mais cette forte convergence des données expérimentales ne trouve pas sa confirmation en clinique ...
- Gaffney (1998) étudie 30 patients avec cancers du sein mutés pour BRCA 1 et 29 pour BRCA 2 et ne retrouve aucune majoration des réactions aigues après radiothérapie.

- Leong (2000) recherche des mutations BRCA 1 et 2 chez 11 patientes porteuses de cancers du sein et ayant présenté une hyper-radiosensibilité marquée lors de la radiothérapie :
- Aucune mutation n'est retrouvée dans ce groupe de patientes ...

- Pour ce qui est de la radiosensibilité des tumeurs mutées pour BRCA 1 ou 2 :
- Données contradictoires ;
- Meilleur pronostic (plus grande radiosensibilité?) pour Verhoog (1998) et Watson (1998)
- Moins bon pronostic (tumeurs plus agressives?) dans l'expérience de l'Institut Curie (Ansquer 1998)

- Ces données ont également donné lieu à de vifs échanges dans la littérature sur les risques de la mammographie :
- Den Otter (1993 et1996) et Law (1997)
 mettent en garde contre les risques
 théoriques de cancers radio-induits chez les
 femmes prédisposées ...
- Mettler (1996), Feig (1997) et Beemsterboer (1998) calculent que, même avec les hypothéses les plus pessimistes, le bénéfice excède largement le risque théorique ...
- Ne pas jeter le bébé avec l'eau du bain !

- ICRP 79:
- « In most, if not all instances of familial cancer predisposition associated with the dominant inheritance of strongly expressing tumor suppressor gene mutations, there will be an absolute increase in the probability of radiation-induced cancer... »
- Cependant, le risque est difficile à quantifier (Chakraborty 1998)

Sclérodermie

- Maladie du collagène caractérisée par le développement d'une fibrose assez similaire à la fibrose radio-induite tardive
- Après radiothérapie, il a été rapporté une incidence accrue de complications (Delanian 1996, Aref 1996)
- Dans certains cas, l'aggravation était non seulement locale (en territoire irradié) mais aussi généralisée (Haustein 1990)...

Sclérodermie

 L'augmentation du TGF Beta trouvé dans ces sclérodermies pourrait rendre compte de cette toxicité (Delanian 1996)

 De plus, les données de Mc Curdy (1997) suggère une altération de la réparation de l'ADN (test des comètes)

Patients séropositifs HIV

- Les radiothérapeutes qui eurent à irradier les premiers patients HIV positifs se trouvèrent confrontés à des toxicités, en particulier muqueuses, tout à fait inhabituelles ...
- Il semble que les choses se soient améliorées depuis , mais ...

Patients séropositifs HIV

 Plusieurs articles continuent à faire état de problèmes de toxicité sévère après radiothérapie des patients HIV + :

Costleigh 1995, Hautarz 1997, Leigh 1998 ...

Patients séropositifs HIV

- Les causes de cette hypersensibilité ?
- Surinfections multiples, en particulier de la sphère ORL? La meilleure prise en charge actuelle de ces infections pourrait expliquer l'amélioration observée (?) ...
- Déficit en Gluthation ? (Vallis 1991, Hugues-Davies 1991)
- Hypersensibilité des fibroblastes ? (Formenti 1995)

Autres Pathologies

Quelques Syndromes rarissimes :

- Nijmegen Breakage Syndrom (une forme d'Ataxia ?)
- Idiopathic Chromosome Fragility (ICF)
- Syndrome de Cockayne
- Syndrome de Bloom

Autres Pathologies

La Maladie de Behcet:

 Dans un groupe de 4 patients porteurs d'une maladie de Behcet et irradiés pour cancer, Cengiz (1999) observe 3 complications très sévères; plexite radique, fibrose urétèrale, nécrose cutanée ...

Autres Pathologies

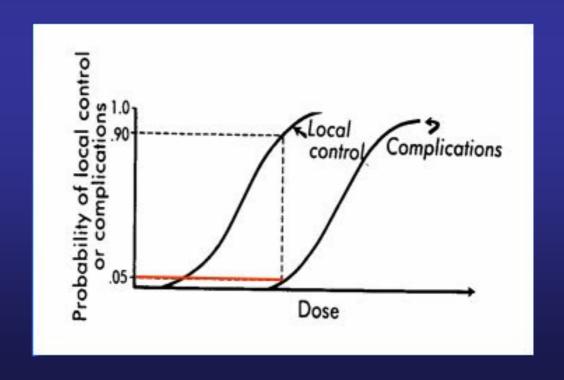
Le Diabète:

- Dans une série de 944 patients irradiés pour cancer prostatique, Herold (1999) montre que le diabète est un facteur indépendant pour :
 - La toxicité gastro-intestinale grade 2
 - La toxicité génito-urinaire grade 2

Prédiction de la radiosensibilité des tissus sains ?

Vers une meilleure optimisation....

David AZRIA


Département d'Oncologie Radiothérapie INSERM U896, Institut de Recherche en Cancérologie de Montpellier CRLC Val d'Aurelle, Montpellier

Recherche du "Graal" en Radiothérapie

Individualiser les traitements en fonction des caractéristiques du patient et de la tumeur

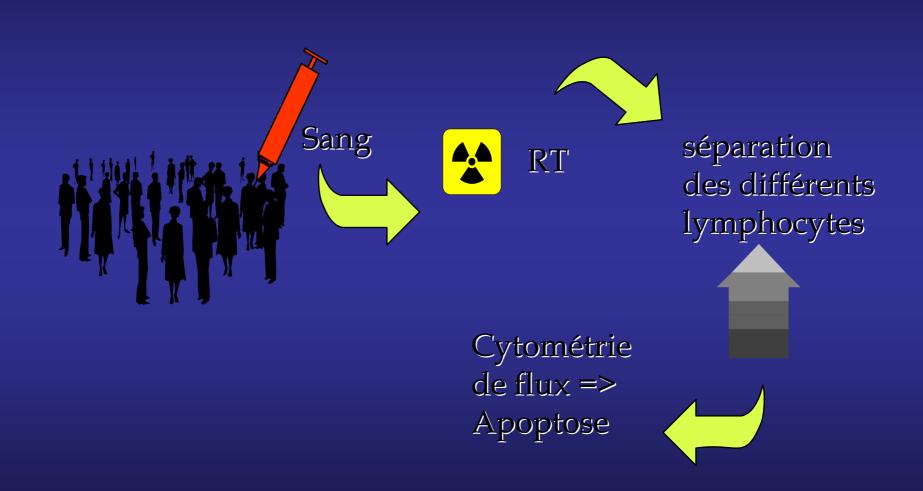
Optimiser l'effet différentiel

Tumeur/tissu sain

Facteurs de radiosensibilité

Liés au traitement

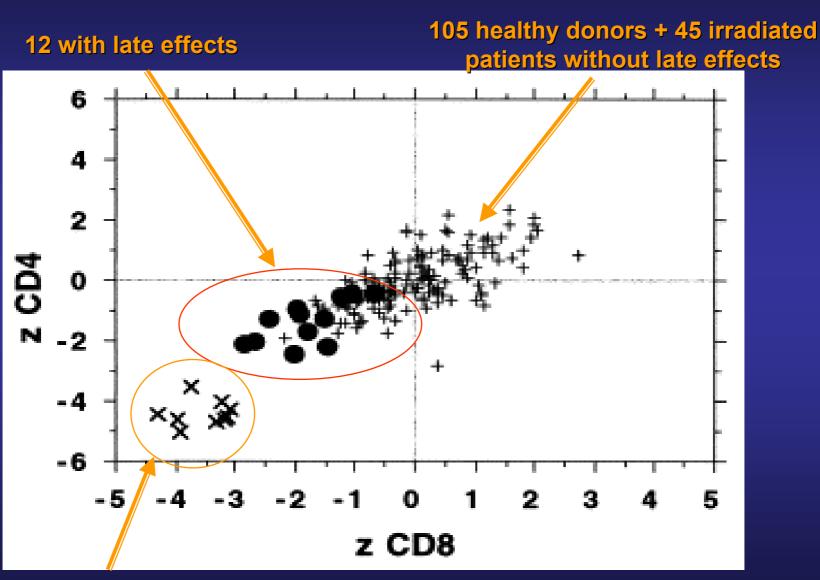
- Dose totale
- Fractionnement
- Volume
- Étalement
 - « Consequential late effect »
- Technique
- Associations concomitantes
 - Chimiothérapie
 - Hormonothérapie


Liés au patient

- Cadre génétique
 - Mutation homozygote du gène ATM
- Circonstances favorisantes
 - Age avancé
 - Tabagisme
 - Affections microvasculaires
 - Diabète
 - HTA
 - Sclérodermie généralisée

Différentes catégories des essais

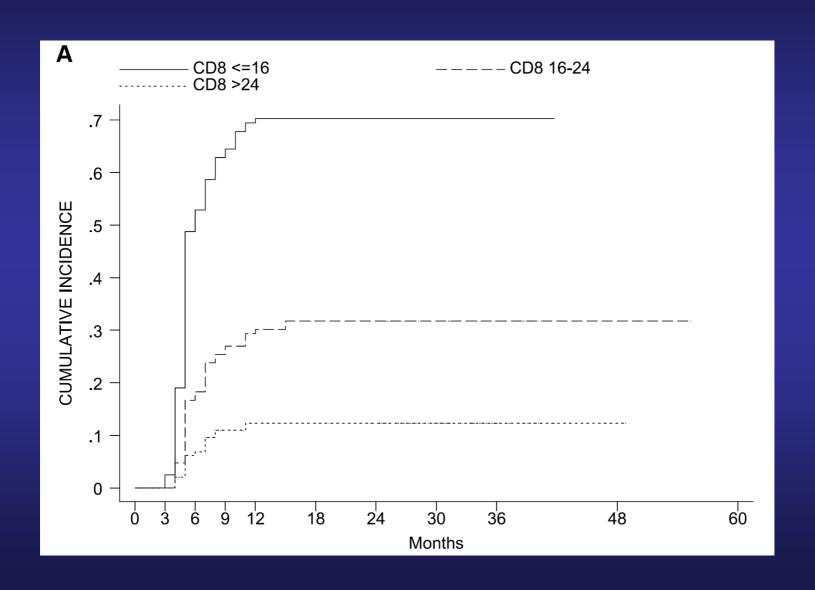
- Tester la capacité des cellules à survivre et répliquer
 - Test clonogénique/Tests colorimétriques
 - SF2/D₀/D_x
- Tester la fréquence des aberrations chromosomiques
 - Test des aberrations chromosomiques/FISH/Test des micronoyaux
- Tester la capacité des cellules à réparer les lésions radioinduites
 - Test des comètes/PGFE..
- Autres
 - Test apoptose/TGF-beta1 plasmatique


Test apoptose

Test apoptose

- Prélèvement de 5 ml dans un tube hépariné
- Dilution 1:10 du sang dans le milieu RPMI
- Irradiation in vitro 0 et 8 Gy (conditions oxygénées)
- Incubation de 48 h
- Coloration des lymphocytes avec des anticorps monoclonaux
- Lyse érythrocytaire et fixation
- Coloration de l'ADN par l'iodure de propidium
- Analyse de l'apoptose avec la cytométrie de flux

CD4 et/ou CD8


Cancer Therapy: Clinical

CD4 and CD8 T-Lymphocyte Apoptosis Can Predict Radiation-Induced Late Toxicity: A Prospective Study in 399 Patients

Mahmut Ozsahin,¹ Nigel E.A. Crompton,² Sophie Gourgou,³ Andrew Kramar,³ Ling Li,¹ YuQuan Shi,² Wendy Jeanneret Sozzi,¹ Abderrahim Zouhair,¹ René O. Mirimanoff,¹ and David Azria^{1,3}

Clin Cancer Res, 2005, 11:7426-7433

Taux bas d'apoptose et radiotoxicité tardive

ATM SEQUENCE VARIANTS AND RISK OF RADIATION-INDUCED SUBCUTANEOUS FIBROSIS AFTER POSTMASTECTOMY RADIOTHERAPY

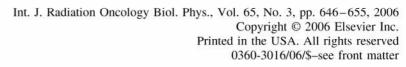
Christian N. Andreassen, M.D.,* Jens Overgaard, M.D., D.M.Sc., F.A.C.R., F.R.C.R.,*

Jan Alsner, Ph.D.,* Marie Overgaard, M.D.,† Carsten Herskind, Ph.D.,†

Jamie A. Cesaretti, M.D.,* David P. Atencio, Ph.D.,* Sheryl Green, M.D.,*

Silvia C. Formenti, M.D., Richard G. Stock, M.D.,* and Barry S. Rosenstein, Ph.D.,*

Departments of *Experimental Clinical Oncology and *Oncology, Aarhus University Hospital, Aarhus, Denmark; *Department of Radiation Oncology, University of Heidelberg, Mannheim Medical Center, Mannheim, Germany; Departments of *Radiation Oncology, *Community and Preventive Medicine, and *Dermatology, Mount Sinai School of Medicine, New York, NY; *Department of Radiation Oncology, New York University School of Medicine, New York, NY


CLINICAL INVESTIGATION

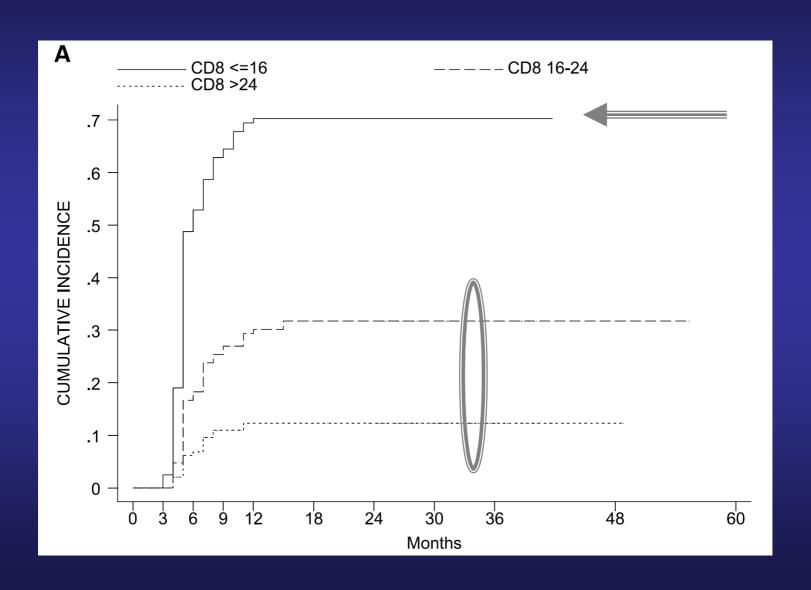
Normal Tissues

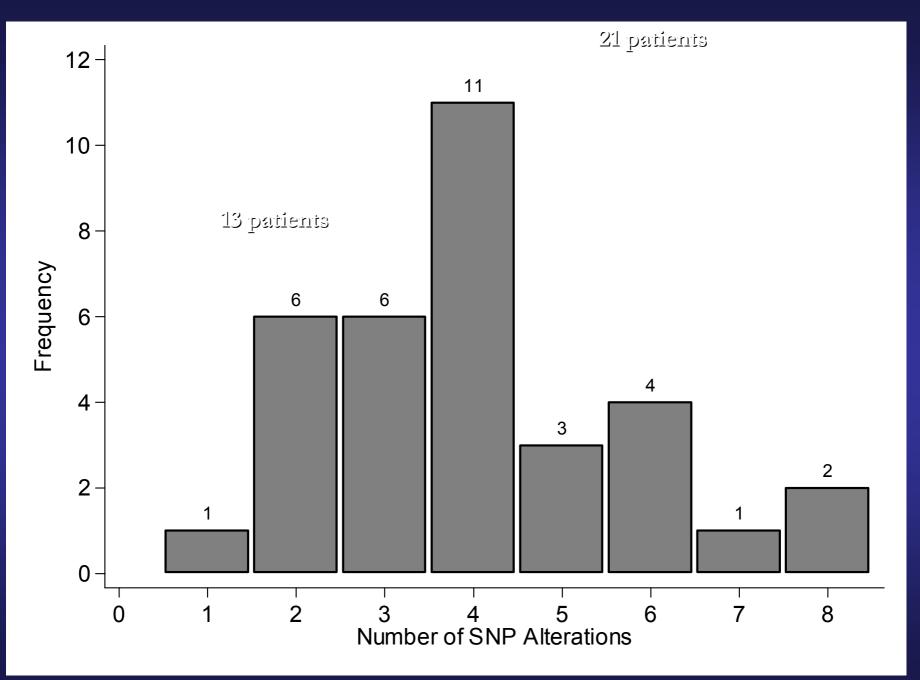
RADIATION-INDUCED DAMAGE TO NORMAL TISSUES AFTER RADIOTHERAPY IN PATIENTS TREATED FOR GYNECOLOGIC TUMORS: ASSOCIATION WITH SINGLE NUCLEOTIDE POLYMORPHISMS IN XRCC1, XRCC3, AND OGG1 GENES AND IN VITRO CHROMOSOMAL RADIOSENSITIVITY IN LYMPHOCYTES

KIM DE RUYCK, M.Sc.,* MARC VAN EIJKEREN, M.D., Ph.D.,[†] KATHLEEN CLAES, Ph.D.,[‡] RUDY MORTHIER, M.D.,[§] ANNE DE PAEPE, M.D., Ph.D.,[‡] ANNE VRAL, Ph.D.*[†] LEO DE RIDDER, M.D., Ph.D.,* AND HUBERT THIERENS, Ph.D.*

*Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University, Gent, Belgium; †Department of Radiation Oncology, *Center for Medical Genetics, and *Occupational Medicine Service IDEWE, Ghent University Hospital, Gent, Belgium

doi:10.1016/j.ijrobp.2006.03.006

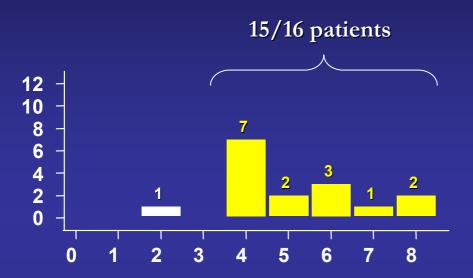

REPORT

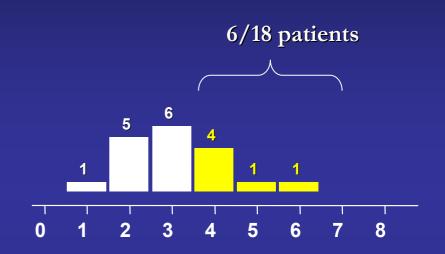

GENETIC PREDICTORS OF ADVERSE RADIOTHERAPY EFFECTS: THE GENE-PARE PROJECT

Alice Y. Ho, M.D.,* David P. Atencio, Ph.D.,* Sheila Peters, B.A.,* Richard G. Stock, M.D.,* Silvia C. Formenti, M.D.,* Jamie A. Cesaretti, M.D.,* Sheryl Green, M.D.,* Bruce Haffty, M.D.,[¶] Karen Drumea, M.D.,[∥] Larisa Leitzin, M.D.,[∥] Abraham Kuten, M.D., David Azria, M.D., Ph.D.,* Mahmut Ozsahin, M.D., Ph.D.,** Jens Overgaard, M.D., D.M.Sc., F.A.C.R., F.R.C.R.,^{††} Christian N. Andreassen, M.D.,^{††} Cynthia S. Trop, M.D.,^{‡‡} Janelle Park, M.D.,^{§§} and Barry S. Rosenstein, Ph.D.*^{†‡§}

Departments of *Radiation Oncology, †Community and Preventive Medicine, and *Dermatology, Mount Sinai School of Medicine, New York, NY; *Department of Radiation Oncology, New York University School of Medicine, New York, NY; *Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT; Department of Oncology, Rambam Medical Center, Haifa, Israel; *Department of Radiation Oncology, CRLC Val d'Aurelle, Montpellier, France; **Department of Radiation Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; †Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Departments of *Urology and *Radiation Oncology, Bronx VA Medical Center, Bronx, NY

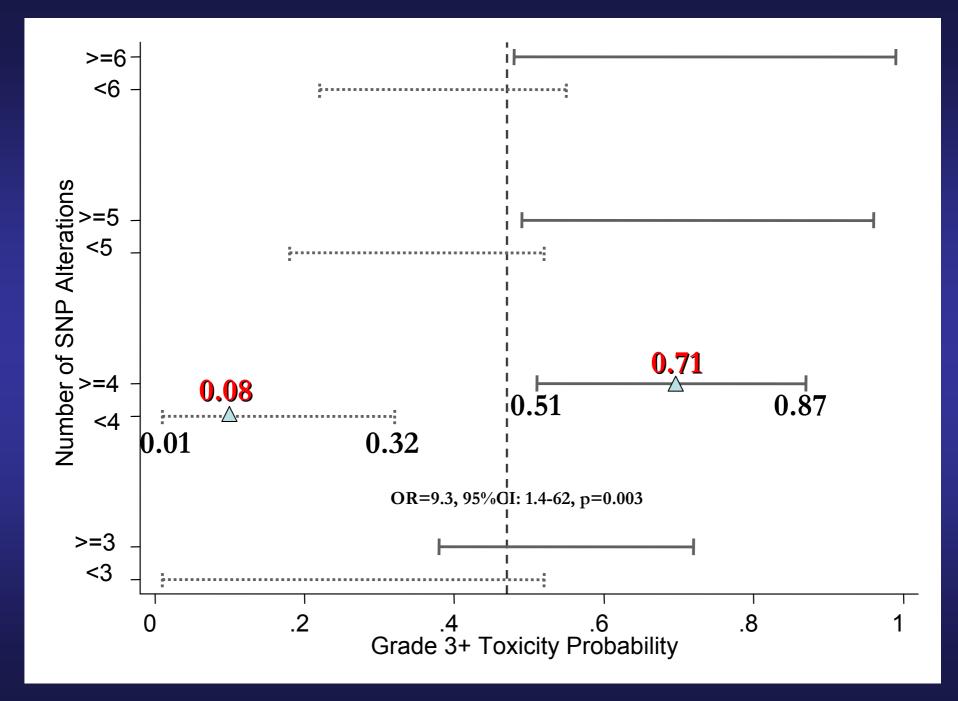
Taux bas d'apoptose et radiotoxicité tardive

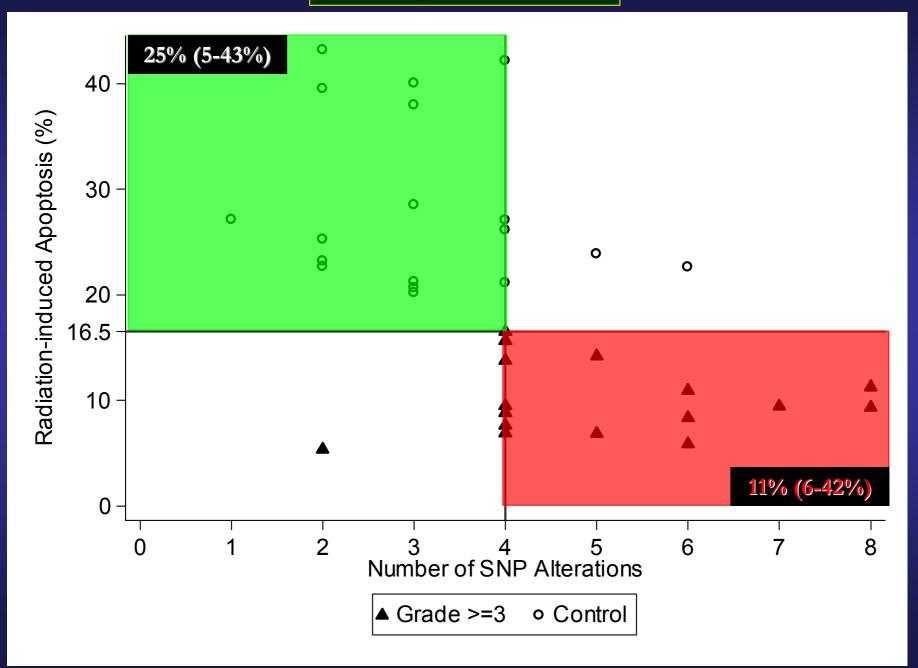


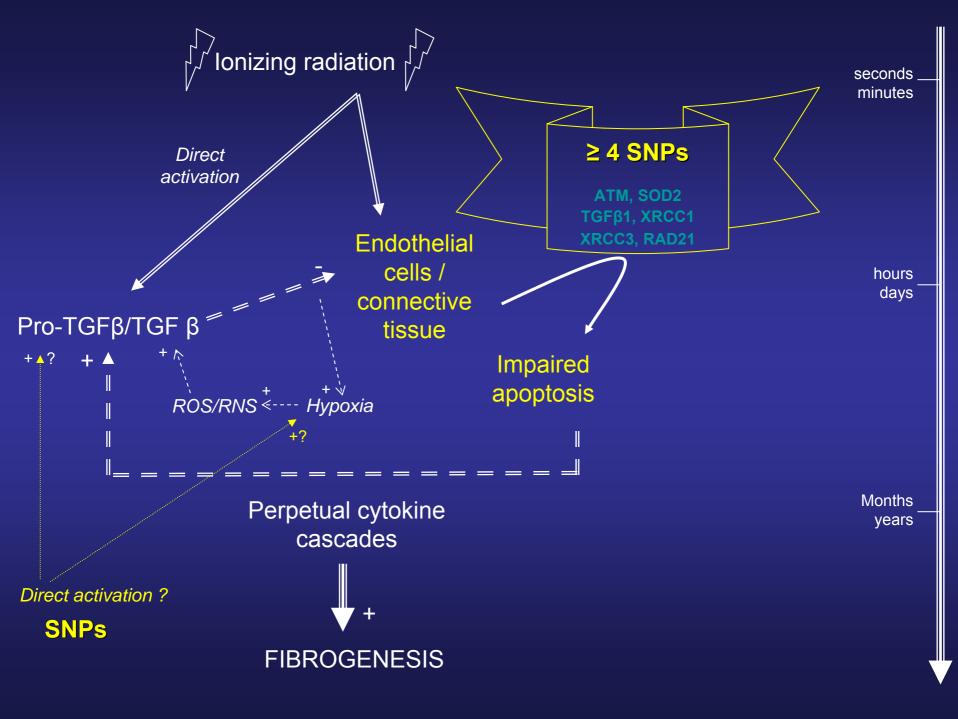


ATM, SOD2, TGFb, XRCC3, hHR21

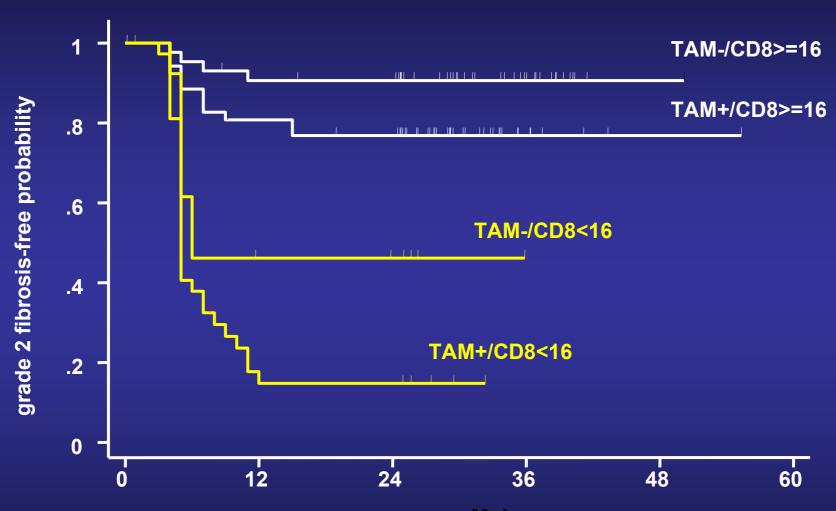
Pas de toxicité




Soit 94%, 95%CI: 70-100

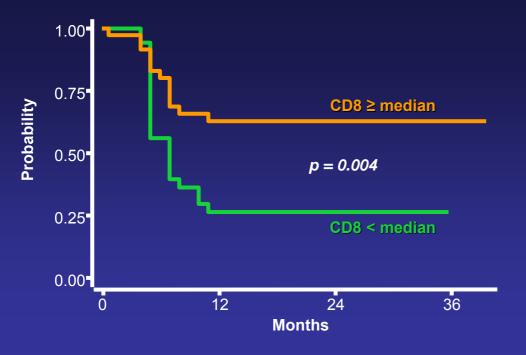

Soit 33%, 95%CI: 13-59

p < 0.001



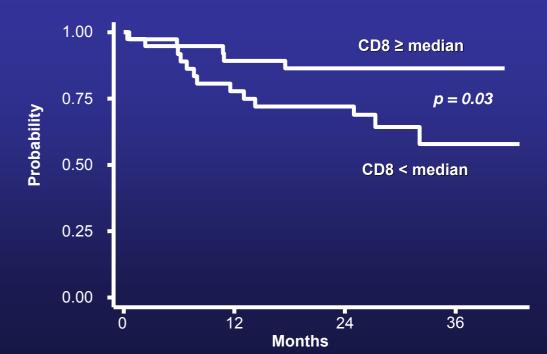
p = 0.004

TAM et RT



Full Paper

Concomitant use of tamoxifen with radiotherapy enhances subcutaneous breast fibrosis in hypersensitive patients


Mois

Br J Cancer, 2004, 91:1251-1260

Toxicités

