

LES APPROCHES METHODOLOGIQUES UTILISEES POUR L'ÉTUDE DES EFFETS DES FAIBLES DOSES DANS LE DOMAINE DE LA MICROBIOLOGIE

Pierre-André CABANES
Service des Etudes Médicales EDF-GDF
25 janvier 2007

L'évaluation du risque : une démarche structurée dans un contexte d'incertitude

- Synthèse des connaissances pour définir les effets sur la santé d'une exposition d'individus ou de populations à des matériaux ou à des situations dangereuses
- adaptation aux risques microbiologiques
 - plus récente
 - notamment pour l'eau de boisson et le risque alimentaire
 - encore peu appliquée pour d'autres voies d'exposition

1ère étape : Identification du danger

- Connaissance du pathogène
 - Ecologie : habitat naturel, capacité à se développer dans d'autres milieux - résistance aux agents dénaturants
 - Pathogénicité
 - *Infectivité* : capacité à survivre et/ou à se développer chez l'hôte
 - Virulence : capacité à induire des troubles cliniques
- Connaissance de la pathologie humaine
 - Morbidité, mortalité (incidence, prévalence).
 Populations sensibles, épidémies (taux d'attaque)

2ème étape : Identification des fonctions dose-réponse

- Présence ou absence de seuil ?
 - Ancien concept de DMI
 - Chacun a son seuil à un moment donné...
 - Un organisme peut se multiplier chez l'hôte...
- Établissement d'une courbe dose-réponse
 - A partir des données animales expérimentales (ou humaines)
 - Tester la validité de plusieurs modèles
 - Choisir le plus corrélé aux données animales
 - Extrapoler à l'homme
 - avec confrontation aux données épidémiologiques

Identification des fonctions dose-réponse (3)

Log normal:
$$P = (1/\sqrt{2\pi}) \int_{-\infty}^{z} \exp(-z^2/2) dz$$

 $z = (\log N - \mu)/\sigma$

→ Protozoaires (amibes libres)

Exponentiel : $P = 1 - \exp(-rN)$

où r (constante) est la probabilité de survie du germe dans l'hôte

→ Protozoaires (cryptosporidium, giardia)

→ Bactéries (vibrio)

Bêta poisson:
$$P = 1 - (1 + N/β)^{-α}$$

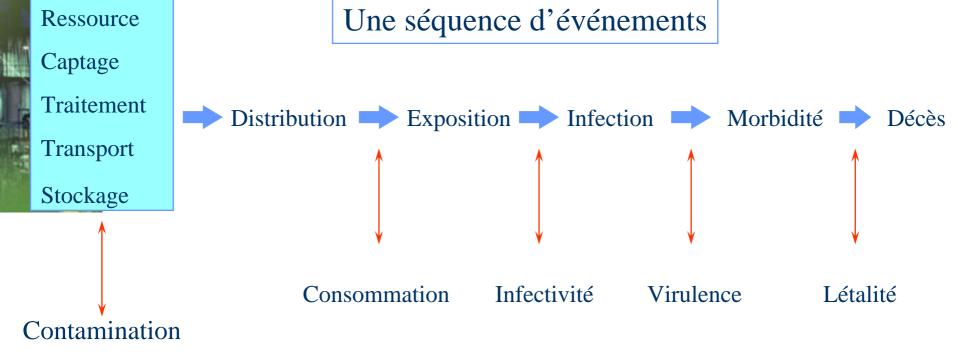
ou $P = 1 - [1 + N(2^{-1/α} - 1)/N_{50}]^{-α}$
où $α$ et $β$ sont les paramètres du modèle

→ Virus (entérovirus)

3ème étape : Caractérisation de l'exposition

- Souvent étape clé
- Délicate
- Nombreuses incertitudes
 - hypothèses (> transparentes)
 - Construction de scénarios
- Exemples
 - eau de boisson
 - eau de baignade
 - aérosol

- Cette étape consiste à donner une (ou plusieurs) estimation(s) du risque qui décrit à la fois les effets attendus, les risques individuels correspondant aux scénarios d'expositions définis, le risque collectif.
- Les hypothèses et les incertitudes inhérentes à ces estimations sont clairement énoncées et étudiées.
- Utilisation par les gestionnaires et les décideurs pour mettre en œuvre des actions ou des politiques de réduction des risques.


4ème étape : Caractérisation du risque

- Risque individuel « P » pour une exposition, donné par la courbe, en fonction de la dose ou niveau d'exposition
- Risque collectif
 - > P_i (ou P_m) * nombre de personnes exposées
- **Pour** « x » événements

$$p_x = 1 - (1 - p)^x$$

Le risque microbiologique lié à l'eau de boisson

Les principaux micro-organismes pathogènes transmis par voie hydrique

Bactéries

Risque

Virus (virus entériques)

Risque 1

Parasites (protozoaires)

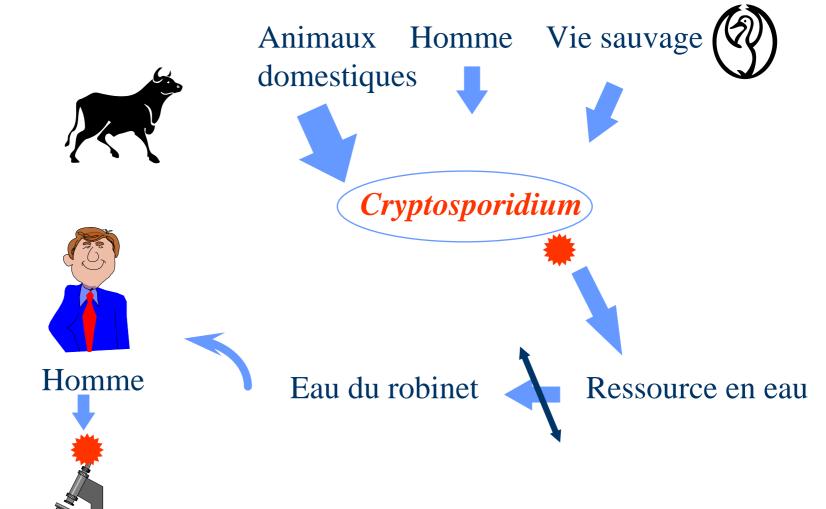
Risque 1

Un risque «nouveau» sous-estimé? Des pathogènes problématiques!

Pathogènes véhiculés par l'eau [OMS, 1994]

Pathogène	Résistance au c12	DI 50	Réservoirs animaux	Symptômes
Campylobacter	faible	modérée	oui	
E. coli path	faible	élevée	oui	ı
Salmonelles	faible	élevée	oui	GE aiguë
Shigella spp	faible	modérée	non	-
Y. enterocolitica	faible	élevée	oui	
V. cholerae	faible	élevée	non	cholera
Adenovirus	modérée	faible	non	
Enterovirus	modérée	faible	non	GE aiguë,
Norwalk	?	faible	non	troubles
Rotavirus	?	modérée	non	respiratoires
VHA	modérée	faible	non	hépatites
Giardia	élevée	faible	oui	GE aiguë
Crypto	élevée	faible	oui	-

Le risque lié aux protozoaires ex : *Cryptosporidium*


Prise de conscience du risque lié à Cryptosporidium

- Responsable de troubles digestifs +/- sévères (ID) et d'épidémies massives aux US
 - Milwaukee, 1993 400 000 malades, 4 400 hospitalisations
- Responsable de 8 % des GE en Angleterre 13 % des GE en Écosse (données 1989)
- Forme de résistance directement contaminante
- Infectivité élevée (1 à 132 oocystes)
- Difficulté de sa recherche dans l'environnement
- Résistants aux traitements...

Cycle de contamination par *Cryptosporidium* (C. *parvum* ou C. *muris*)

Gestion du risque hydrique basée sur l'évaluation du risque -1

- Evaluation du niveau de contamination responsable d'un impact sanitaire observé
 - Milwaukee (Mac Kenzie et al, 1994)
 - 1.2 [0.42-4.5] pour 0.79 oocystes / 1 (mesuré)
- Autres données expérimentales animales et humaines
- Données traitées avec le modèle exponentiel

Gestion du risque hydrique basée sur l'évaluation du risque - 2

- Niveau de risque individuel annuel acceptable
 - Par exemple < 10⁻⁴
- Risque individuel quotidien $[p_x = 1-(1-p)^x]$
 - **2,7.10**-7
- Relation dose réponse
 - Dose correspondante d'oocystes : 6,6.10⁻⁵
- D'où une concentration dans l'eau de boisson
 - \bullet 3,3.10⁻⁵ (2 L/j)
 - Soit 0,003 oocyste pour 100 litres

Gestion du risque hydrique basée sur l'évaluation du risque - 3

- Comment contrôler ?
- Difficile de mesurer de si faibles concentrations
- Connaissance de l'efficacité des traitements de l'eau
- Mesures des concentrations dans l'eau ressource
 - Si on a un abattement de 6 log
 - la concentration limite est de 30 oocystes par litre
 - Pour 3 log on obtient 3 oocystes pour 100 litres

Le cas de l'amibe libre Naegleria fowleri

Quel risque pour les baigneurs ??

LES AMIBES LIBRES

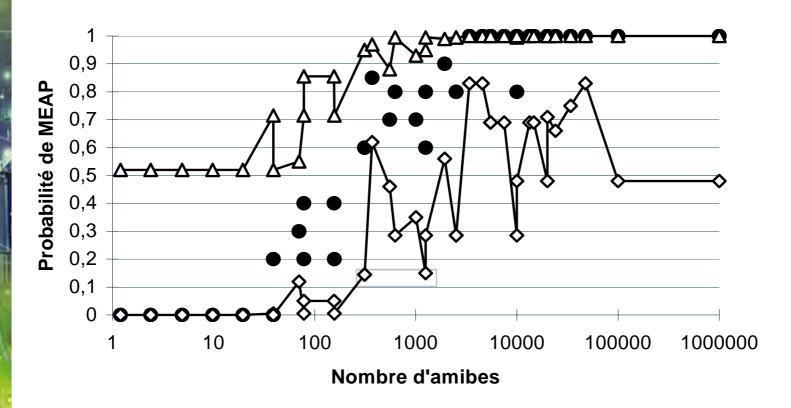
- Cycle de vie indépendant
 - Bonnes conditions environnementales = multiplication
 - Températures > 30 °C et jusqu'à 45 °C
- Rien à voir avec les autres amibes
 - Cycle de vie complexe
 - Hôtes intermédiaires
 - Pathologies humaines liées à ces passages
 - « Amibiase »

Quel danger ??

- Méningo-encéphalite amibienne primitive (MEAP)
- Enfants, jeunes adultes, sains
- Baignade, plongeons, nage sous-marine
- Contact amibe-muqueuse nasale
 - irritation préalable, liée aux plongeons, multiplication locale ?
- Pénétration cérébrale, multiplication et destruction nerveuse
- Décès ...

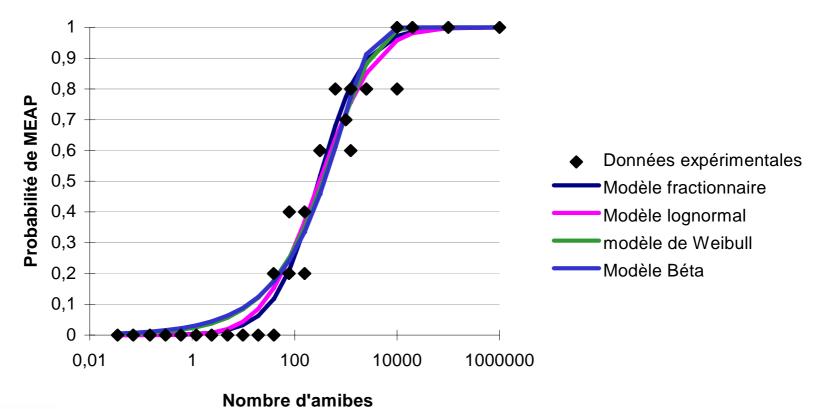
LA MEAP: Nombre de cas

- Maladie rare (pathogène accidentel)
- 200 cas publiés (la moitié aux USA)
- Baignade dans des lacs ou des cours d'eau chauds
- Eau du robinet (Australie)
- Piscines (République Tchèque, Belgique)
- ◆ Thermes (NZ, GB)
- Effluents industriels?
 - **Évaluation du risque**


RELATION DOSE-EFFET

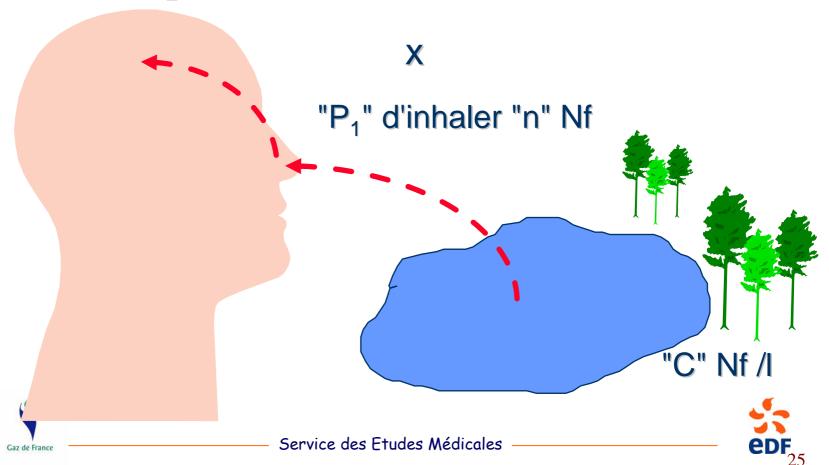
- Peu de données humaines
- Données animales
 - Bon modèle animal
 - Instillation de quantités connues d'amibes chez des souris en intra-nasal
 - Observation du nombre de décès
- Problèmes
 - fortes doses
 - extrapolation à l'homme

DONNEES ANIMALES



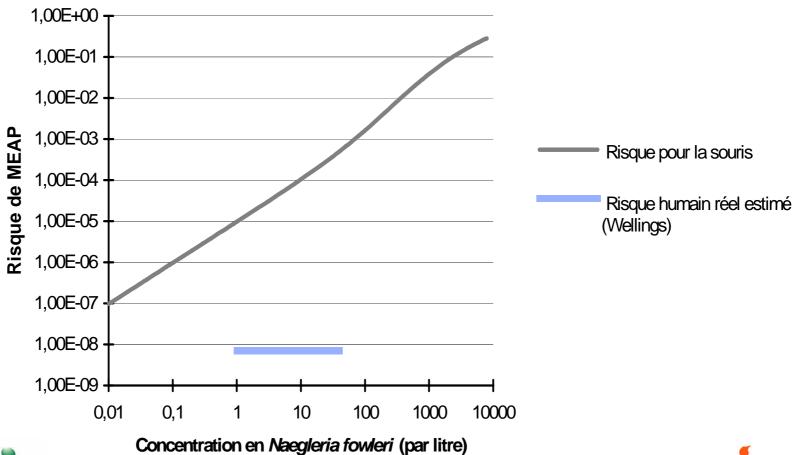
- Données expérimentales
- → Bornes inférieures (IC 95 %)
- → Bornes supérieures (IC 95 %)

Modélisation données animales

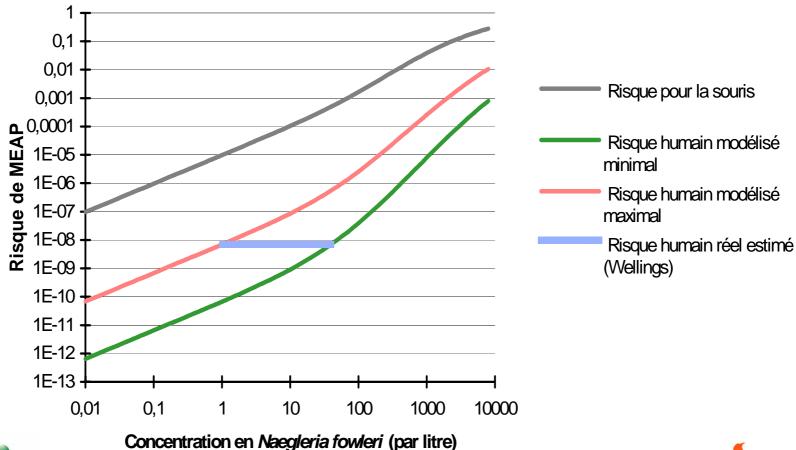

Estimation de l'exposition

- Cas des rejets dans un cours d'eau
- Exposition par baignade
- Répartition des amibes dans l'eau selon une loi de Poisson
- Volume d'eau passant dans le nez par baignade = 10 ml
- Probabilité de doses reçues f(C)

"P₂" probabilité de décès pour "n" Nf



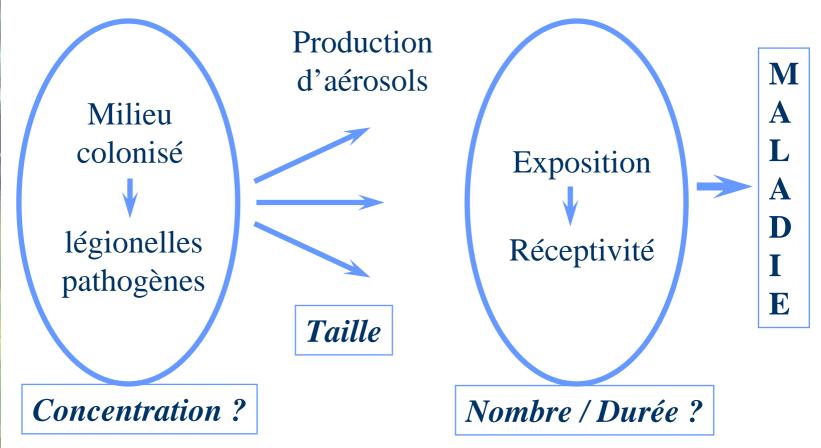
- Pour chaque concentration dans le milieu on va obtenir une probabilité de MEAP
- SOMME des produits suivants :
 - p(inhaler n amibes)*p(meap/n amibes)
- Risque lié essentiellement à la probabilité d'inhaler une amibe, pour les faibles concentrations
- Risque pour la souris,
- Risque pour l'homme ?



Conclusions

- Fixation d'une limite environnementale 100 Nf/L (risque de 2,5.10⁻⁶)
- Faiblesses du modèle
 - Souches de laboratoire = souches environnementales ?
 - Incertitude sur la dose injectée
 - Incertitude sur l'exposition
 - Dose minimale infectieuse
 - Agrégation d'amibes avec des MES
 - Homme plus résistant que la souris ?

L'évaluation des risques liés aux Légionelles


Position du problème

- Maladie des légionnaires
 - 1400 cas / an en France
 - 12% de taux de létalité
 - Personnes sensibles
 - Formes « bénignes » non diagnostiquées
- Risque lié à l'exposition à un aérosol contaminé
 - Tours aéroréfrigérantes, douches, spas, fontaines, humidificateurs, lagunes avec aérateur
 - Gestion actuelle au niveau du terme source

Conditions d'apparition d'un cas

Relation dose-effet

- Pas de données épidémiologiques quantitatives
 - Raisonne sur le terme source et pas sur une dose
- Études animales
 - Quelle événement sanitaire ? (fièvre ? décès...)
 - Pas de modèle évident
 - Pathogénicité des souches
 - Chaque souche sera différente
 - Souches d'élevage # souches sauvages
 - Exposition des animaux...
- Quelques modélisations effectuées (béta-poisson)
- Application directe à l'homme ???

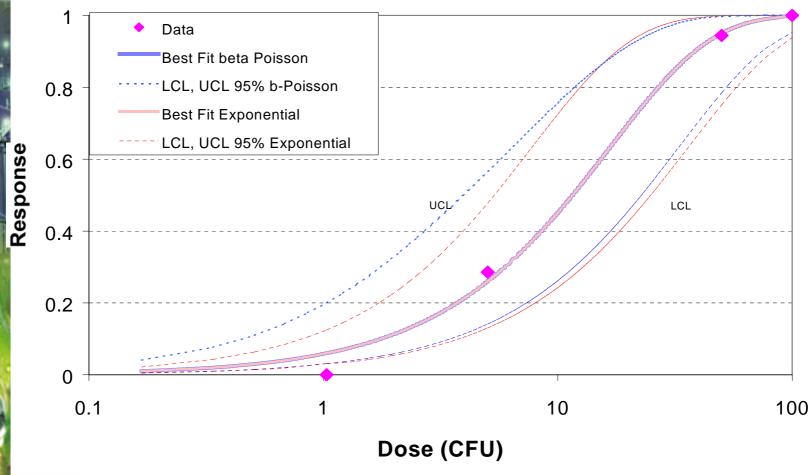
Armstrong et HAAS, SRA 2002

Table 2

Muller 1983 Estimated Dose-Response, with 95%Lower and Upper Confidence Intervals (as % Response) for the Response

Model	ID _{50%} CFU	ID _{1%} CFU
Exponential	11.7 (28 –78)	0.17 (0.5 – 2)
Approximate beta-Poisson	11.5 (30 – 80)	0.17 (0.5 – 4.1)
Exact beta-Poisson*	11.5	0.17
Weibull	11.6 (22 – 76)	0.17 (0.02 – 12)
Probit	9.2 (23 – 75)	0.90 (0 – 18)
Logistic	8.7 (20 – 80)	0.64 (0.01 – 15)

*confidence intervals not calculated



Armstrong et HAAS, SRA 2002

Figure 2. beta-Poisson (Approximate) and Exponential Models
Muller (1983) Guinea Pig Infectivity

(note: Best Fit Exponential and beta-Poisson (approximate) overlap)

Estimation de l'exposition...

- Mesure des légionelles dans l'eau
 - Libres, biofilm, amibes
- Concentration en zone d'exposition
 - Mesures dans l'air ?
 - Modélisation aérosolisation/dispersion
 - Survie ??
 - Est-ce les légionelles libres l'événement important ?
- Quelle période d'exposition ?
- Approche différente longue distance/courte distance?
- Approche pragmatique pour la gestion

