

VARIABILITE DE LA RADIOSENSIBILITE INTER-INDIVIDUELLE

TESTS PREDICTIFS

VARIABILITE DE LA SENSIBILITE INDIVIDUELLE

Effets non stochastiques/déterministes (fortes doses) plus dépendant de la dose et moins des individus – effets prévisibles

Effets stochastiques (faibles doses) moins dépendant de la dose et plus des individus

Cependant la variabilité interindividuelle a été mise en évidence après radiothérapie, donc à fortes doses

dommages des tissus sains

tumeurs radioinduites

ORIGINES DE LA VARIABILITÉ

Facteurs génétiques majeurs

Bloom

ataxia

xeroderma

Fanconi

Maladies liées à des mutations autosomales récessives dans des gènes impliqués dans la réparation de l'ADN Les individus hétérozygotes sont-ils prédisposés aux cancers?

Facteurs génétiques mineurs

suspectés par la variabilité de la réaction des tissus sains à la radiothérapie - gènes non identifiés

FACTEURS EPIGENETIQUES Radiosensibilité cellulaire ou tissulaire

Cellules proliférantes plus sensibles que cellules non proliférantes système digestif, cellules hématopoïétiques

-Age: pas de relation linéaire entre la radiosensibilité et l'âge

-Sexe: les hommes sont plus résistants que les femmes test MN? la dispersion de la variabilité est plus importance chez les femmes que chez les hommes

-Facteurs épigénétiques et environnementaux hormones nutrition alcool tabac

CAUSES DE LA VARIABILITÉ

On peut admettre que la variabilité individuelle de la radiosensibilité est liée, en grande partie, à la variabilité interindividuelle à :

- réparer les lésions radioinduites dans l'ADN et/ou à
- éliminer les cellules endommagées

TESTS PHENOTYPIQUES POUR MESURER LA VARIABILITE INTERINDIVIDUELLE DE LA RADIOSENSIBILITE

Tests prédictifs de la radiosensibilité

Cancers

Qu'est ce que la radiosensibilité?

Effets précoces-----Effets tardifs

Quelles cellules?

Quels tests?

Survie cellulaire

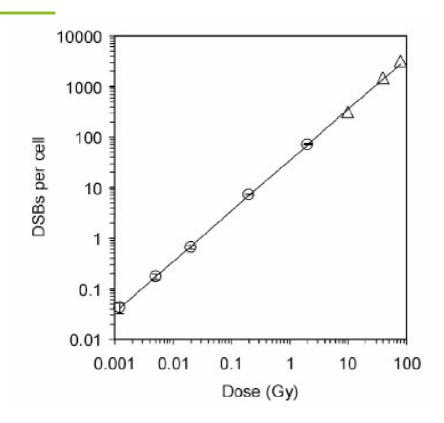
Cassures de l'ADN

Réparation des altérations

Génotoxicité

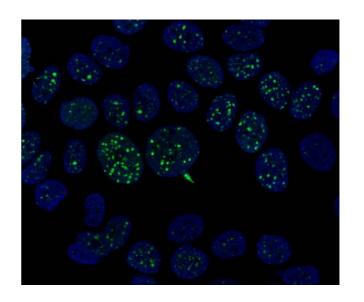
Apoptose

A quelle(s) dose(s) faut-il travailler?

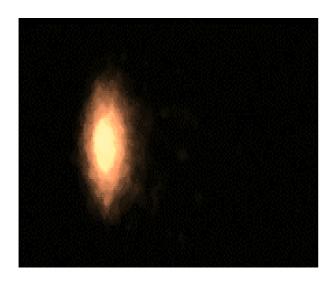

Sensibles

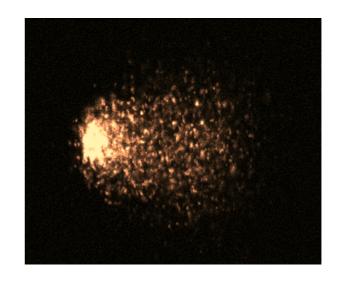
Proportionnels à la dose

Reproductibles (intra- inter-laboratoires

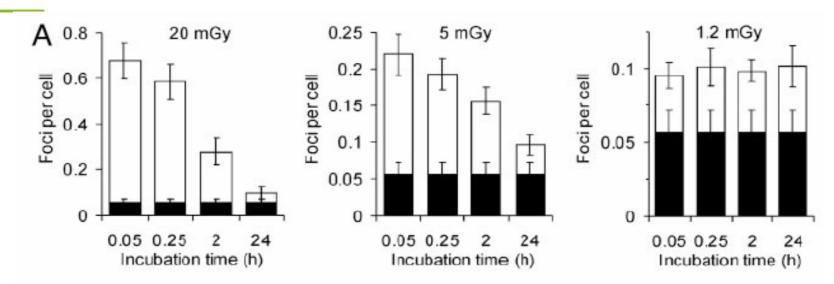

Phosphorylation de l'histone gH2AX sur des fibroblastes En fonction de la dose d'irradiation

Double strand breaks DSBs


DSBs appear at 1 mGy Linear induction of DSBs,

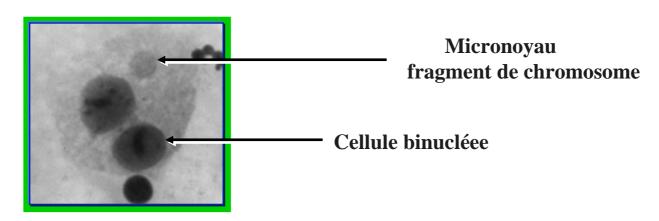

Rothkamm et Löbrich, PNAS 2003;100:5057-5062

CASSURES DE L'ADN TEST DES COMÈTES


Témoin

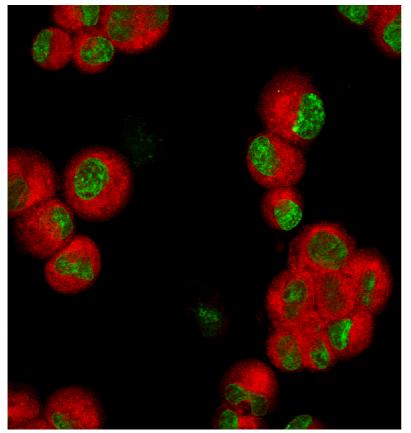
ADN cassé

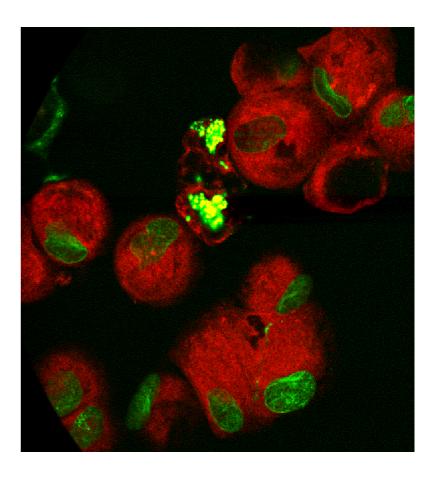
Réparation des cassures DB fibroblastes



Rothkamm and Löbrich 2003 Proc. Natl. Acad. Sci. USA 100(9):5057-5062

LE TEST DES MICRONOYAUX




Technique de blocage à la cytochalasine B (Fenech et coll. 1985)

Informations sur la génotoxicité et la prolifération

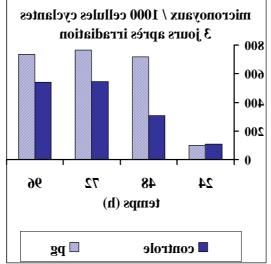
APOPTOSE - TEST TUNEL

Témoin

Cellules apoptotiques

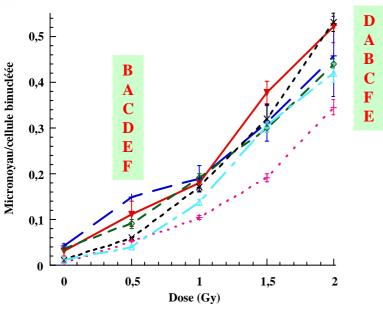
- On observe une protection contre la mort radioinduite par la progestérone uniquement dans les cellules exprimant le récepteur à l'hormone.
- Cette protection est indépendante du statut de p53 ou de l'effet de l'hormone sur la prolifération

MORT CELLULAIRE = APOPTOSE


On observe après marquage au Hoechst 33258 des cellules présentant une condensation de la chromatine et des corps apoptotiques

La progestérone protège contre l'apoptose radioinduite

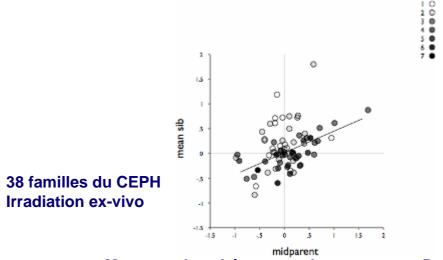
RESISTANCE A L'APOPTOSE......



Après irradiation, la progestérone augmente :

- le taux de cellules cyclantes
- le taux d'aberrations chromosomiques dans les cellules cyclantes

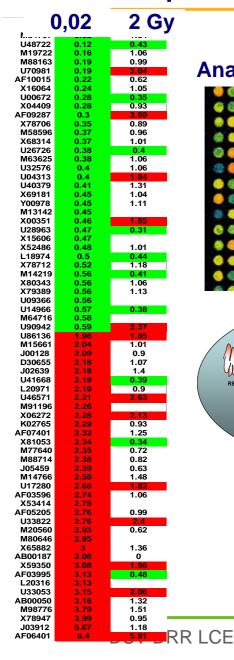
La complexité des réponses


Variabilité inter- et intra-individuelle de radiosensibilité

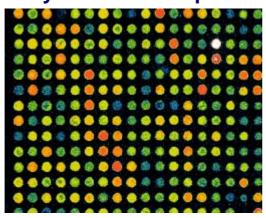
donneurs sains non apparentés

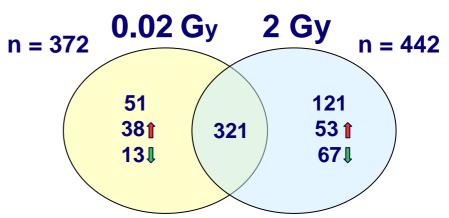
Quel(s) phénotype(s)? Quelles doses? Origine de la variabilité?

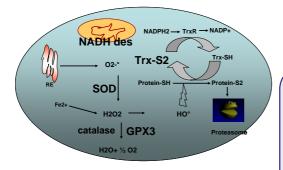
Héritabilité de la susceptibilité à l'apoptose radioinduite des lymphocytes humains


Moyenne des phénotypes des parents en R avec moyenne des phénotypes de la fratrie

transmission mendélienne impliquant un gène dominant


Quel gène? Polymorphismes?

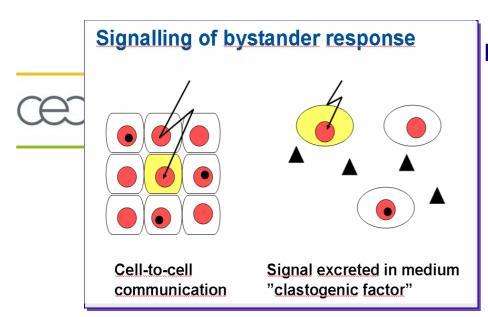

Extrapolation linéaire... de plus en plus complexe!


Est-il possible d'extrapoler des fortes aux faibles doses ? (1)

Analyse du transcriptome

Selon les gènes, on observe une relation

- •oui / non
- •à seuil
- dose réponse


L'extrapolation linéaire sans seuil...
Oui, mais pas toujours!

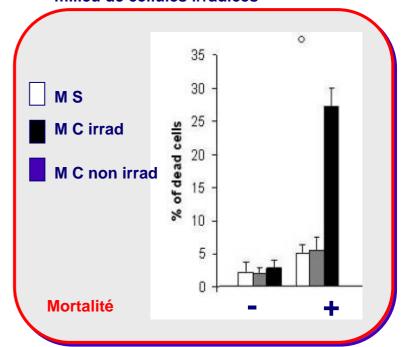
ENCORE PLUS COMPLEXE!

Adaption Bystander Instabilité génétique différée

La complexité des effets

Mort des cellules

- •irradiées (~ dose)
- •voisines non irradiées (non ~ dose)


Quels sont les signaux? Pourquoi certaines cellules sont-elles émettrices et/ou réceptrices?

L'extrapolation linéaire sans seuil...
Non!

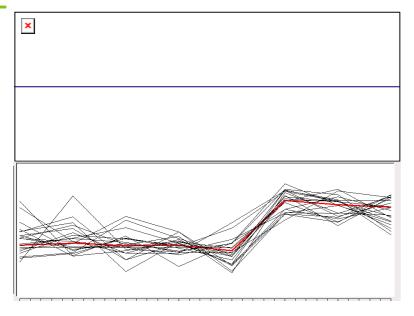
Les effets indirects de l'irradiation

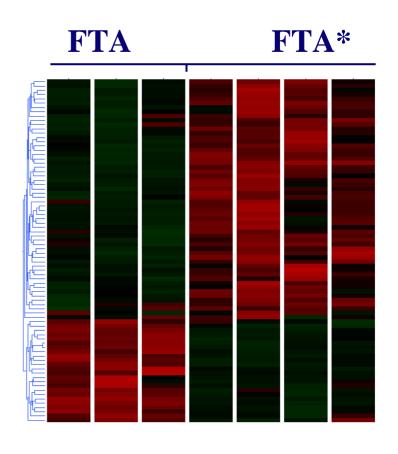
- •réponse adaptative
- •effets à distance
- •hypersensibilité aux faibles doses
- •instabilité génomique différée
- •mort différée

Cellules non irradiées incubées avec du milieu de cellules irradiées

DSV DRR LCE

SFRP 11 Mars 2008


RISQUE DE CANCER AUX FAIBLES DOSES D'IRRADIATION


- Il existe une masse considérable de données scientifiques au niveau moléculaire et cellulaire mais ces résultats sont obtenus avec des doses élevées de rayonnements
 - **❖** Meilleure identification des tumeurs radio-induites parmi tous les cancers (l'irradiation entraîne le plus souvent des pertes de fragments de gènes ou chromosomes)
 - Rechercher des marqueurs (signatures) spécifiques au niveau des gènes
 - **A**méliorer la connaissance des cancers : diagnostic précoce et traitement
 - ❖ Développer l'épidémiologie moléculaire RISQUE AUX FAIBLES DOSES

Diagnostic moléculaire des cancers radio-induits de la thyroïde

Gènes différentiellement exprimés

RECHERCHE DE MARQUEURS PRÉDICTIFS DE LA VARIABILITÉ INTERINDIVIDUELLE DE LA RADIOSENSIBILITÉ

Stratégies expérimentales possibles

Facteurs génétiques

Facteurs épigénétiques et environnementaux

ADN mutations polymorphisme ARN RT-PCR Transcriptome Protéines
Western blot
Activité
Protéome