

La dosimétrie par radio photoluminescence à l'IRSN

5 èmes Rencontres des PCR RUNGIS les 15 et 16 mars 2007

F.Leblanc – P. Fraboulet – JF Bottollier-Depois – E. Girard – E. Cale – C. Itié - A. Saboureau – E. Grava

Sommaire

- 1. Introduction
- 2. La Radio Photo Luminescence: généralités
- 3. Principales caractéristiques
- 4. Description du futur dosimètre
- 5. Calendrier
- 6. Conclusion

1. Introduction

Les techniques utilisées aujourd'hui:

- Le film photographique
- Le détecteur thermo luminescent (TLD)
- Les détecteurs de traces (CR39)

Pourquoi remplacer le film dosimétrique ?

Le film dosimétrique est un bon détecteur mais :

- Disparition à terme du film argentique
- Evolution réglementaire : délais de transmission des résultats, seuils

1. Introduction

Par quoi remplacer le film dosimétrique?

Trois techniques disponibles:

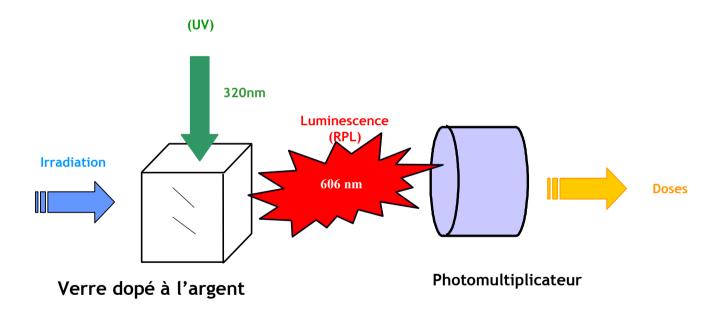
- la dosimétrie par thermo luminescence (TLD),
- la dosimétrie par luminescence stimulée optiquement (OSL),
- la dosimétrie par radio photo luminescence (RPL).

Après analyses techniques, économiques et financières

le dosimètre RPL remplacera le dosimètre photographique de l'IRSN.

2. La radio photo luminescence, qu'est-ce que c'est?

La technique RPL :

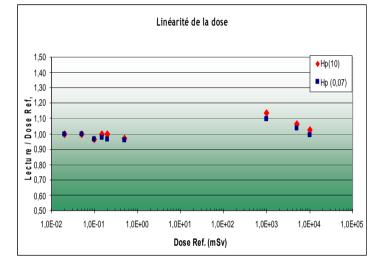

- Une technique connue depuis la fin des années 1960.
- Utilisée en laboratoires de recherche (CEA, IRSN,...).
- Plusieurs millions de dosimètres produits chaque année notamment au Japon.

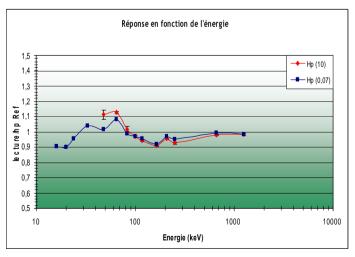
Principes physiques :

- Les techniques TLD, OSL et RPL sont des techniques très voisines.
- Elles sont toutes basées sur le principe de quantification d'une émission de lumière.
- Dans le cas de la RPL, cette luminescence est induite par un détecteur en verre contenant des impuretés (argent) placé sous un faisceau ultra violet.

2. La radio photo luminescence, qu'est-ce que c'est?

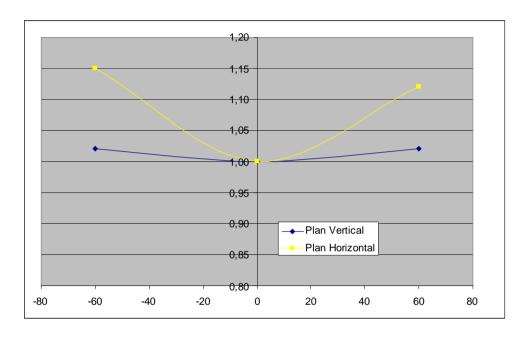
• Schéma de principes


3. Principales caractéristiques

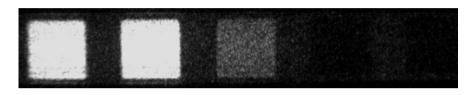

Des tests sous rayonnements ont montré des caractéristiques métrologiques très

performantes:

• Possibilités de mesurer des doses très faibles :

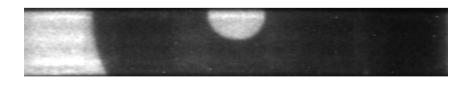

- quelques µSv sous certaines conditions,
- •plus petit résultat non nul transmis inférieure ou égal à 50 µSv,
- très bonne sensibilité aux photons et aux betas.
- Possibilités de mesurer des <u>doses très élevées</u> (10 Sv et plus sous certaines conditions).
- Pas de sensibilité aux neutrons (important en cas d'exposition en champs complexe).
- Excellente réponse en énergie.

3. Principales caractéristiques

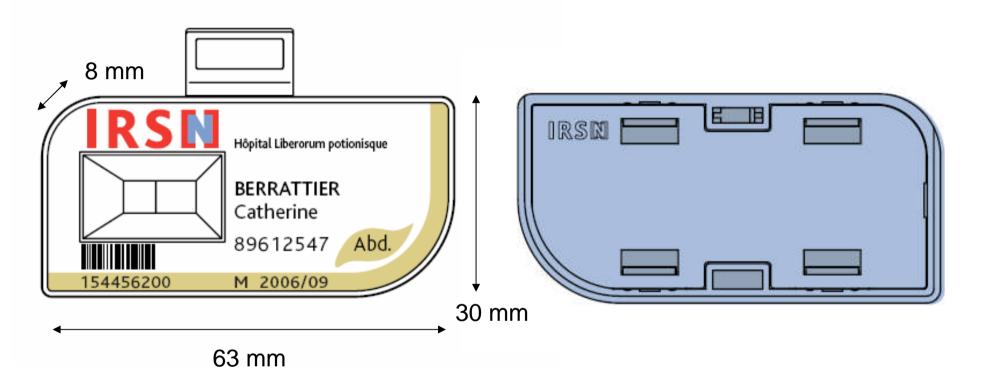

• Excellente réponse angulaire

- •Très grande homogénéité des détecteurs :
 - déviation entre lots : 0,9444 +/- 0,036
 - déviation dans un même lot : +/- 1,3 %
- •Très grande stabilité de lecture : -2,7 % +2,5 %

3. Principales caractéristiques

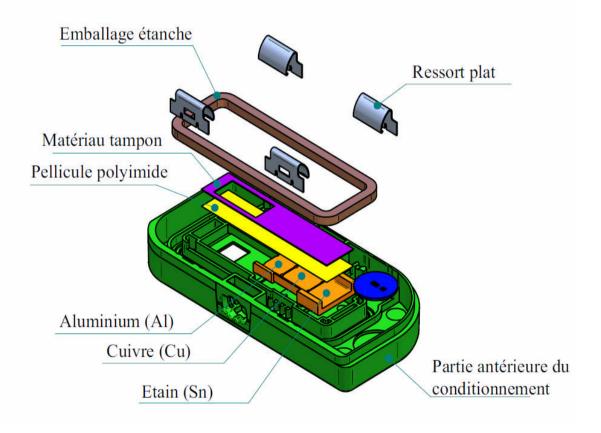

- 5 plages de lecture en routine
- 15 plages en lecture analytique (5 plages sur 3 niveaux)
- ⇒ Possibilité d'obtenir des informations sur la nature et l'énergie du rayonnement à l'origine de l'exposition.
- Possibilité de produire une image de la dose (archivage, ...).
- Possibilité de relire le dosimètre autant de fois que nécessaire.

Photons X de 13.8 keV



Béta de 1.3 MeV

Rondelle métallique placée devant le dosimètre engendrant une erreur de mesure de la dose


4. Description du futur dosimètre

- •Dosimètre entièrement conditionné et prêt à l'emploi
- •Protection par film thermo rétractable à chaque envoi (respect des mesures d'hygiène)
- Faible poids : 12 gr environ, faible épaisseur

4. Description du futur dosimètre

Partie antérieure du conditionnement

5. Calendrier

Quelques dates clés

- Validation du prototype : terminée
- Début de la bascule : 4^{ème} trimestre 2007
- Fin de la bascule : au plus tard décembre 2008

6. Conclusion

La dosimétrie par radio photo luminescence :

- Une technique d'avenir peu connue en France
- Des caractéristiques techniques très performantes
- Un dosimètre garantissant un excellent suivi dosimétrique
- Un dosimètre permettant d'obtenir des informations sur la nature et l'énergie du rayonnement à l'origine de l'exposition.
- Un dosimètre permettant à notre institut d'assurer pleinement sa mission de surveillance dosimétrique tout en améliorant la qualité de notre prestation.