

Détection et Identification des RADionucléides

Système de détection et d'identification automatique d'objets radioactifs en mouvement

L.Guillot CEA/DAM/DIF

Problématique

Tous les signaux radioactifs détectables ne sont pas illicites

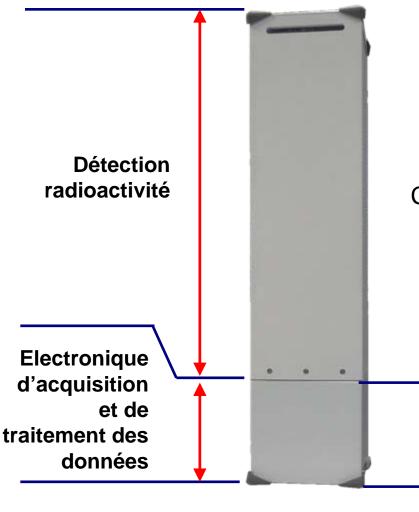
Catégorie	Isotopes	Produits fréquemment rencontrés	
Radionucléides naturels	⁴⁰ K, ²²⁶ Ra, ²³² Th et descendants, ²³⁸ U et descendant	Engrais, céramiques	
Radionucléides médicaux	⁶⁷ Ga, ⁹⁹ Mo, ^{99m} Tc, ¹⁰³ Pd, ¹¹¹ In, lodes (¹²³ I, ¹²⁵ I, ¹³¹ I), ²⁰¹ TI	Ex: 99mTc pour scintigraphie (quantité administrée: 1000 MBq)	
Radionucléides industriels	⁵⁷ Co, ⁶⁰ Co, ¹³³ Ba, ¹³⁷ Cs, ¹⁹² Ir, ²²⁶ Ra, ²⁴¹ Am	Irradiateur, détecteur à incendie	
Matériaux nucléaires	U, Pu		

Système DIRAD

Polyvalent:

- ✓ Adaptable à différents **contextes d'emploi** (surveillance de piétons, surveillance routière...) ;
- ✓ Détection de source sur des porteurs en mouvement (jusqu'à 100 km/h);
- ✓ Utilisation embarquée possible (train, métro, véhicule).

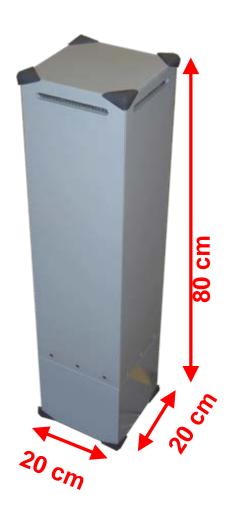
> Autonome :


- ✓ Surveillance continue 24h/24 et 7j/7;
- √ Stabilisation et étalonnage sans présence de source ;
- ✓ Analyse automatique des spectres en temps réel dans la balise;
- √ Transmission des alarmes à distance vers un poste de contrôle.

Sélectif :

- ✓ Identification automatique d'une large gamme de radionucléides ;
- ✓ Détermination du **niveau de menace** potentielle associé à chaque détection.
- ✓ Taux de fausses alarmes faible : 1 fausse alarme / 30 heures de fonctionnement.

Prototype DIRAD


Cristal Nal 4 L

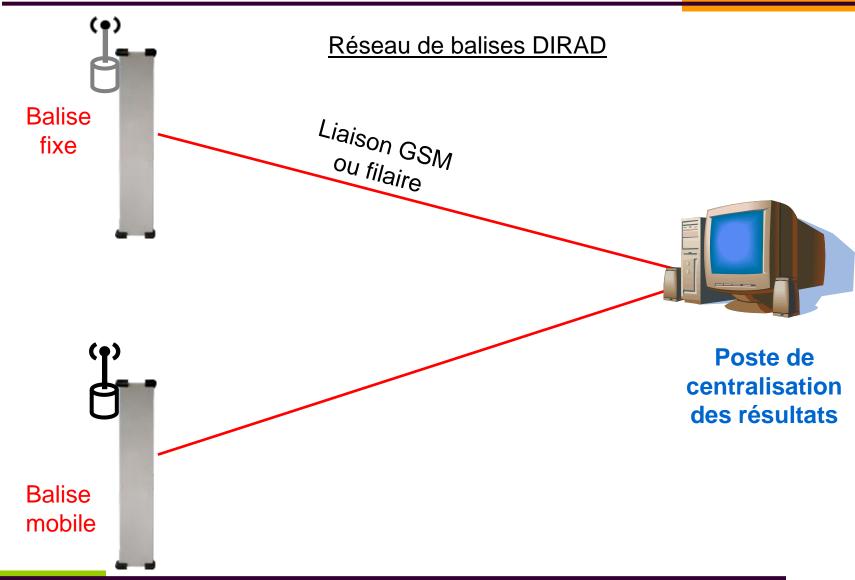
Algorithme permettant la détection en temps réel d'une anomalie radioactive :

- 1. Identification du ou des radionucléides
- 2. Calcul de l'activité de la source
- 3. Estimation du niveau de menace associé

Prototype DIRAD

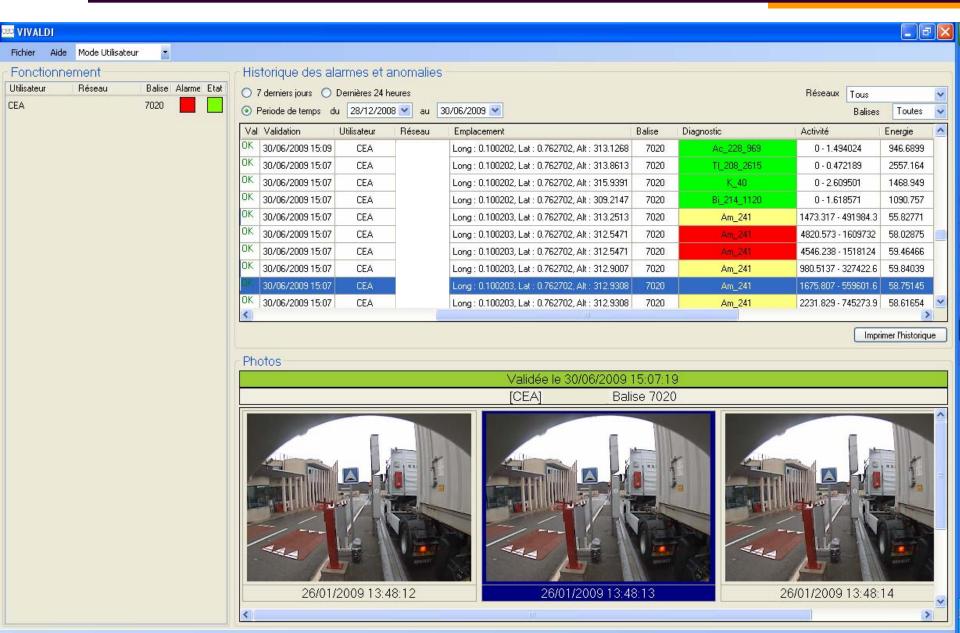
Dimensions :

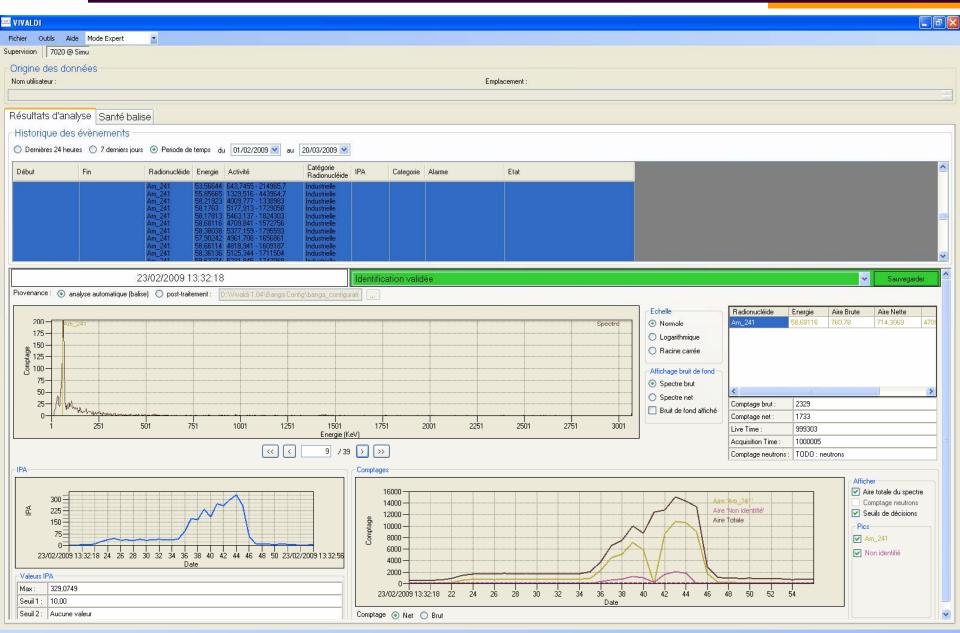
Hauteur = 80 m


Largeur = 20 cm

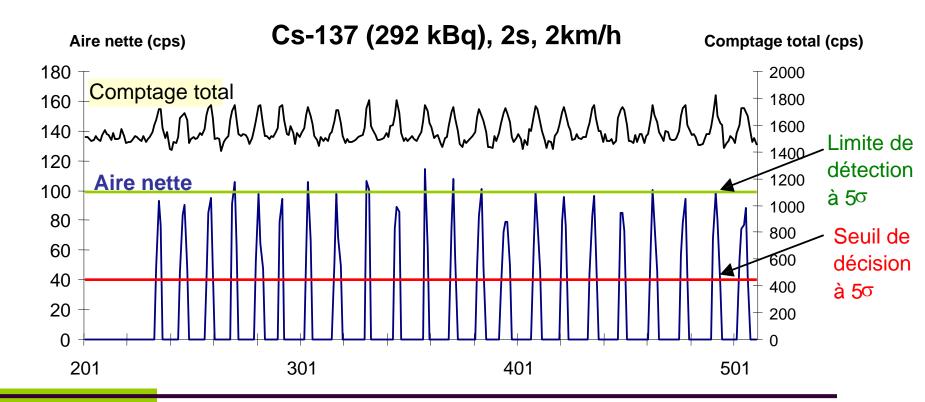
Profondeur = 20 cm

- Poids : 30 kg
- Tension d'alimentation au choix :
 - 220 V AC
 - -12 28 V DC
- Consommation = 50 W
- Fonctionnement en positions verticale ou horizontale
- Etanche au ruissèlement et à la poussière
- Extérieur haut : plastique
- Extérieur bas : acier
- Antennes GPS et GSM intérieures
- Transmissions 3G
- Diodes lumineuses d'alerte


Mise en réseau des balises

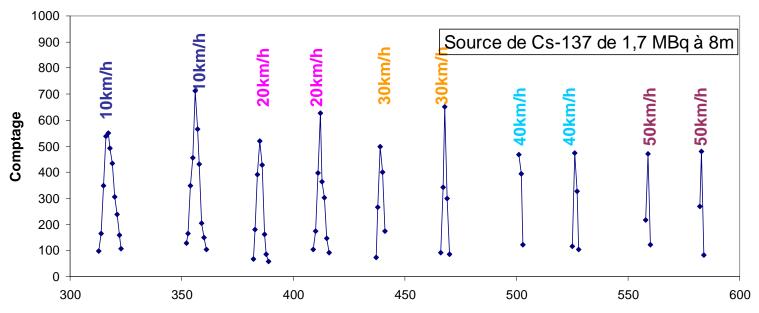

Supervision des balises

Supervision des balises



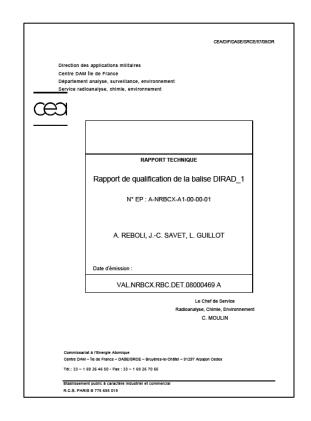
Performances : détection « piéton »

Détecteur Nal de 41

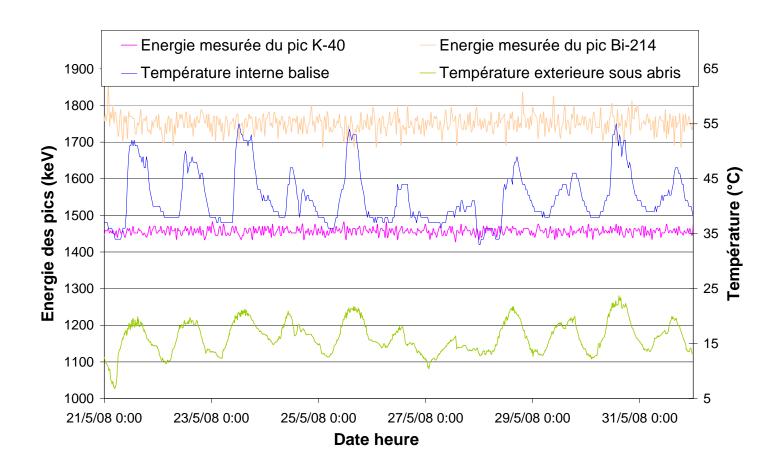


Performances : détection « véhicule »

Variation de la vitesse de 10 à 50 km/h Détecteur Nal de 8L


--- Faible influence de la vitesse sur le maximum détecté

Qualification

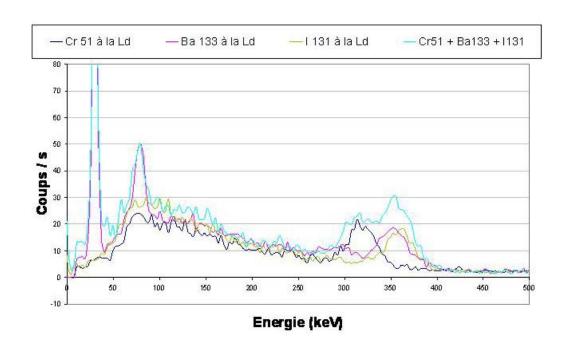

Les deux normes applicables à la balise DIRAD sont :

- ANSI N42.38, American National Standard Performance Criteria for Spectroscopy-Based Portal Monitors Used for Homeland Security (2006) [1],
- •IEC 62484 (CD2), Radiation Protection Instrumentation – Spectroscopy-Based Portal Monitors used for the detection and Identification of Illicit Trafficking of Radioactive Material. (en cours d'établissement) [2],

Qualification : stabilité en température

Qualification: taux d'identification

		ANSI N42.38				IEC 62484	
Radionucléides	Activité (µCi) RN non-blindés	Activité (µCi) RN blindés (3 cm d'acier)	Activité (µCi) RN blindés (7,62 cm d'acier)		Activité (kBq) RN non-blindés	Activité (MBq) RN blindés (3 cm d'acier)	Activité (MBq) RN blindés (7,62 cm d'acier)
²⁴¹ Am	47	,			1740		
¹³³ Ba	9	148			333	5,50	
⁵⁷ Co	15				555		
⁶⁰ Co	7	25			260	0,92	
¹³⁷ Cs	16	85			590	3,10	
DU	4,5 kg				4,5 kg		
⁶⁷ Ga	16		94		590		3,50
HEU	237 g				237 g		
¹³¹	10		23		370		0,85
¹⁹² lr	6	61			220		
⁴⁰ K	128				470		
²³⁷ Np	90 mg (blindé par 1 cm de Fe)) mg (blindé pa cm de Fe)	r	
^{99m} Tc	16		127		590		4,70
²⁰¹ TI	10		88		370		3,20
²²⁶ Ra	8				290		
²³² Th	14				520		
RGPu	1,4 g (blindé par 1 cm de Fe)			1	4 g (blindé par cm de Fe)		
WGPu	15 g (blindé par 1 cm de Fe)			15 1	g (blindé par cm de Fe)		
²⁵² Cf	2.10 ⁴ n/s ± 20%			2.	10 ⁴ n/s ± 20%		


Qualification: taux d'identification

RN	Nombre de points de mesure	Energie des pics utilisés pour l'identification (keV)	Nombre de points identifiés	Taux d'identification (%)
²⁴¹ Am	1067	59	1063	99,6
¹³³ Ba	1000	80 980		98,0
		356	1000	100
⁵⁷ Co	1000	123	997	99,7
¹³⁷ Cs	1000	662	1000	100
⁶⁰ Co	1000	1333	1000	100

Qualification : superposition de raies

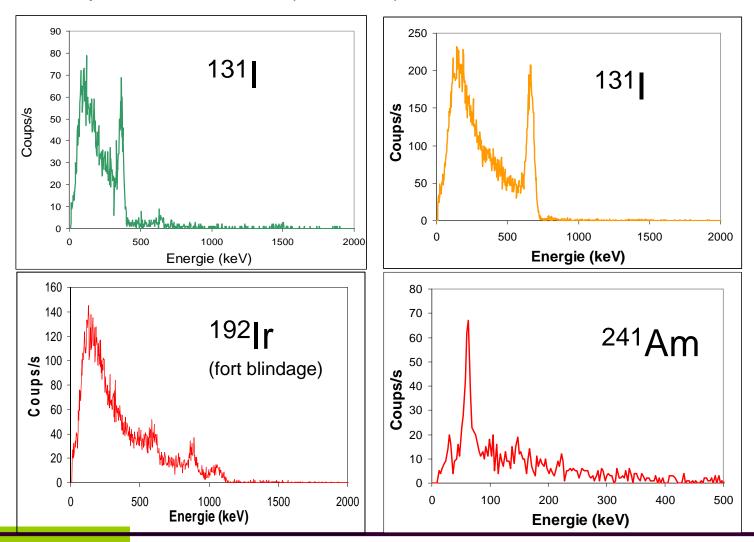
RN	Nombre de points de mesure	Nombre de fausse identification	Energie des pics utilisés pour l'identification (keV)	Nombre de points identifiés	Taux d'identification (%)
133_	1000		78	954	99,4
¹³³ Ba 1000	0	357	998	99,8	
⁵¹ Cr	1000	1	320	998	99,8
¹³¹	1000	0	364	1000	100

Expérimentation en sortie d'un centre nucléaire

Caméra

Expérimentation en sortie d'un centre nucléaire

Radionucléide	Nombre de détections
99mTc	6
201TI	20
1311	21
137Cs	25
60Co	24
192lr	66
241Am	28


Les transports de radionucléides industriels et nucléaires ont tous été détectés et identifiés à plus de 80% en temps réel

Taux de disponibilité de 100% sur 12 semaines Taux de fausses alarmes : 1,43 / 30h

Expérimentation en sortie d'un centre nucléaire

Exemples de détections (sur 1 sec)

Conclusion

- DIRAD est un système de détection et d'identification gamma polyvalent, autonome et sélectif
 ⇒ Il peut être utilisé aussi bien sur un site nucléaire qu'en milieu public
- Expérimentations en cours en milieu public
- Version gamma-neutron au 1er semestre 2010
- Industrialisation en 2010