

**Detection, Measurement, Protection... For a Safer World** 

### Nouvelle génération de matériel de détection et d'identification

Marc Guérin Journées SFRP, La Hague, novembre 2009





### Partie 1 Problématique

- Détection fugitive, de faible niveau
- Cas du homeland security
- Méthode classique
- Alternative proposée



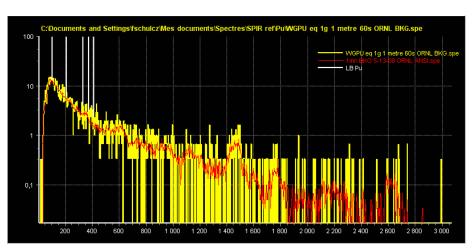
### Détection fugitive à faible niveau

### Problématique

Présence fugitive (< 1s à quelques s)
Faible niveau (dans le bruit de fond)
Détection en temps réel (~1s)
Avec nécessité de discriminer si d'intérêt

### Exemples

Contrôle non intrusif de piéton ou véhicules Recherche de source par des moyens mobiles


à pied, embarqué sur véhicule ou aéronef





## Illustration de la problématique





 Détection et identification d'un très faible niveau de Pu dans le bruit de fond naturel

•BKG: 961 cps

• Pu: 85 cps

Pu non visible dans un spectre 3s mais identifié par SIA/Identpro



# Cas particulier du homeland security

- Circonstances variées d'utilisation opérationnelle
  - Niveau de bruit de fond variable en niveau et nature

En mobile, nature du sol, géométrie et composition environnement

En fixe, ouverture de porte (radon),

- Tentatives délibérées de dissimulation
  - Présence possible d'écran

Blindage intentionnel, Chargement d'un véhicule

Diffusion par le porteur (in vivo)

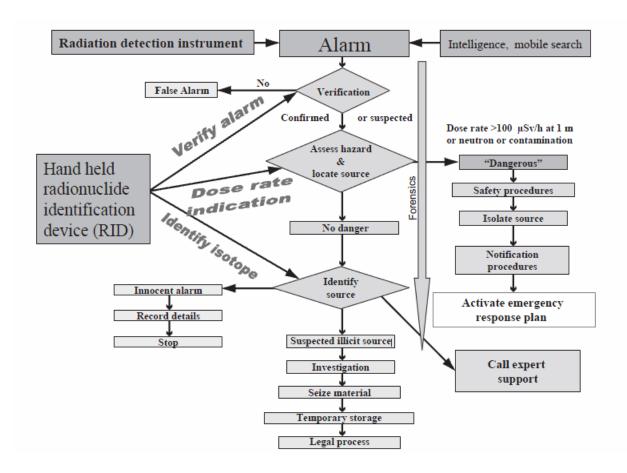
Masquages par sources licites

Chargement de NORM

Présence licite d'isotope médicaux






## Exemples de scénarios de masquage

- Energies proches avec intensités déséquilibrées
  - 99mTc (médical ) et HEU (SNM)
  - 131I (médical) et Pu (SNM)
  - 67Ga (médical ) et HEU (SNM)
  - 226Ra (NORM) et HEU (SNM)
- Masquages dans backscattering ou front Compton
  - HEU dans pic de backscattering 137Cs
  - Pu dans front Compton 137Cs
- Juxtaposition d'isotopes simulant un autre isotope
  - HEU + 237Np très proche de 67Ga





### Méthode classique



#### Détection

 Présence d'une élévation de niveau / BdF

#### Confirmation

- Détection durable
- Localisation
  - recherche max niveau
- Mesure intensité
  - À une distance donnée
- Identification
  - Mesure longue 1 à 10 minutes

>> Séparation des étapes

Extrait document TECDOC IAEA publication 1240 (NSS1)

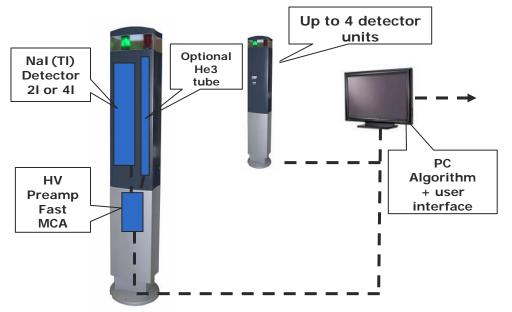




### Nouvelle méthode

- La méthode classique n'est pas applicable en exposition transitoire et/ou si bruit de fond soudainement variable ( utilisation mobile)
- La nouvelle méthode consiste à, idéalement, être capable d'identifier au vol avec une sensibilité suffisante pour à minima classifier si risque ou non
- Attention les méthodes de catégorisation « grossières » ( allure générale du spectre) ne permettent pas la catégorisation fiable Médicaux/SNM et ne résistent pas aux cas de masquage
- >> Seule une identification complète du ou des isotopes présents permet une catégorisation au vol fiable du risque
  - C'est le challenge technique auquel répond la famille SPIR-Ident





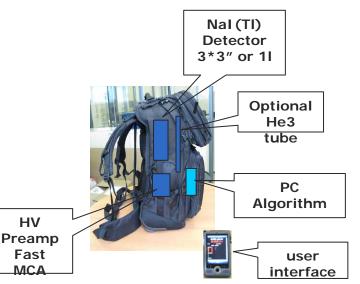

# Partie 2 Technologie

- Technologie SPIR-Ident
- L'algorithme SIA/ Identpro



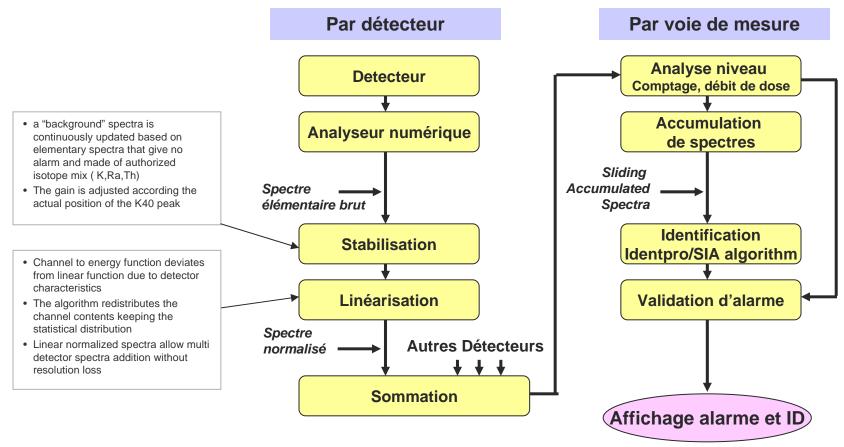
# Technologie SPIR-IDENT général




#### **Objectif**

- Détection de menaces radiologiques
- avec identification temps réel
  - · Avec discrimination d'alarmes innocentes
  - Pour une caractérisation immédiate de la menace

concept de "Détection par l'identification"


#### Moyens:

- Spectrométrie avec grand Nal(TI)
- Un ou plusieurs détecteurs (0,3 à 4\*4 litres)
- Analyseur(s) rapide(s) numérique(s)
- Analyse en continue (0,5s)
- Autostabilisation, linéarisation, normalisation
- Algorithme adapté SIA/Identpro





# Technologie SPIR-IDENT principe du traitement



- Repeated every time slot: 0.5 or 1 second
- For up to 4 detectors and 7 channels ( 4 +left/right/total)

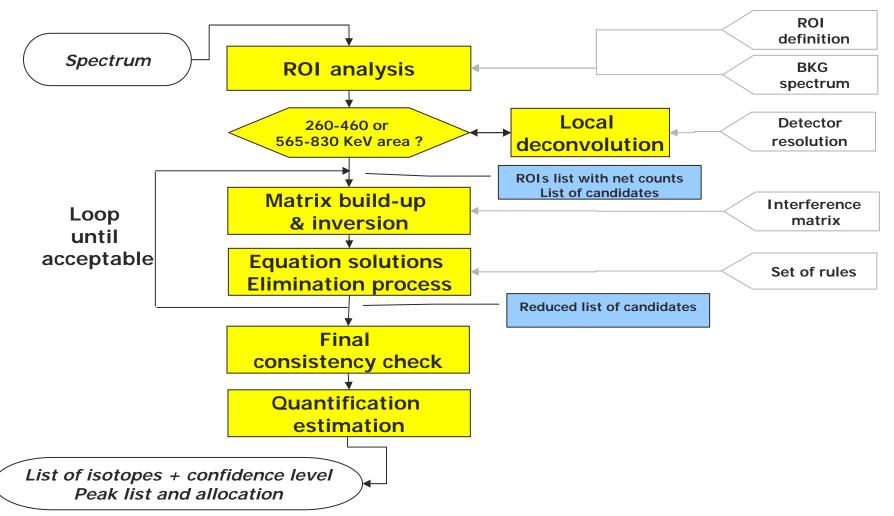




# Algorithme Identpro/SIA

- Adresse les exigences HLS / Illicit trafficking, en particulier les matières nucléaires et les scénarios de masquage
  - Normes ANSI N42-34(RID), N42-38(ASP), N42-43(mobile); IEC 62327(RID),62484 (ASP); IAEA NSS1
- Pour les détecteurs de résolution moyenne: Nal(TI), Csl(TI), CZT, LaBr3

Main isotopes of interest listed by category


| Medical                                                                                                                                                                                                   | Industrial                                                                                                                                                                                                 | Naturally<br>Occurring | Special<br>Nuclear                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|
| <sup>67</sup> Ga<br><sup>99m</sup> Tc<br><sup>103</sup> Pd<br><sup>111</sup> In<br><sup>123</sup> I<br><sup>125</sup> I<br><sup>131</sup> I<br><sup>133</sup> Xe<br><sup>201</sup> Tl<br><sup>51</sup> Cr | <sup>22</sup> Na<br><sup>57</sup> Co<br><sup>60</sup> Co<br><sup>137</sup> Cs<br><sup>152</sup> Eu<br><sup>133</sup> Ba<br><sup>192</sup> Ir<br><sup>207</sup> Bi<br><sup>75</sup> Se<br><sup>241</sup> Am | 40K<br>226Ra<br>232Th  | 233 U<br>235 U<br>238 U<br>239 Pu<br>237 Np |
| 511 keV                                                                                                                                                                                                   | Bremss                                                                                                                                                                                                     |                        |                                             |

- +153Sm, 99Mo, H(n,gamma)
- + U enrichment, Pu burn up

- Analyse multi isotopes: résultats non ambigus, pas une liste de choix
- Adapté aux spectres pauvres
- Identification fiable, faible taux de faux négatifs et faux positifs
- Tolérant à la géométrie et aux écrans
- Pas besoin de données relatives à la source
- Optimisé pour les masquages
- Pas de calibration du détecteur sauf énergie
- Estimation du taux d'enrichissement (U) et du burnup (Pu)

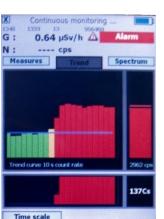


# SIA/ Identpro: Méthode générale





# Partie 3 Les produits


- Matériel portable
- Portique spectrométrique
- Recherche de source embarquée



### **Applications portables**

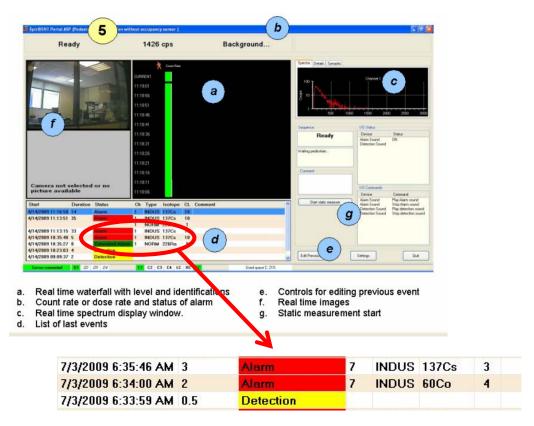






**SPIR-ID** spectromètre de terrain avec NaI(TI) 0,1 à 0,3litre ou LaBr3 et voie neutron

SPIR backpack sac à dos avec Nal(Tl) 0,3 ou 1litre


Et détection neutron

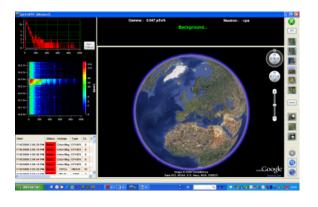




### SPIR-Ident Pedestrian et Véhicule






1 à 4 colonnes, simple ou double hauteur, 2 à 4\*4 litre Nal(TI), option neutron



### **SPIR-Ident** mobile













En valise de transport, modulaire, 2 à 4\*4 litre Nal(TI), option neutron En coffre de toit, avec indication de la direction.

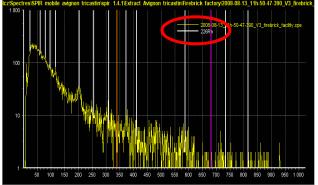


### Partie 4 Performances

- Détection et identification mobile
- Identification de mélanges
- Détection des tentatives de masquage
- Evaluations internationales

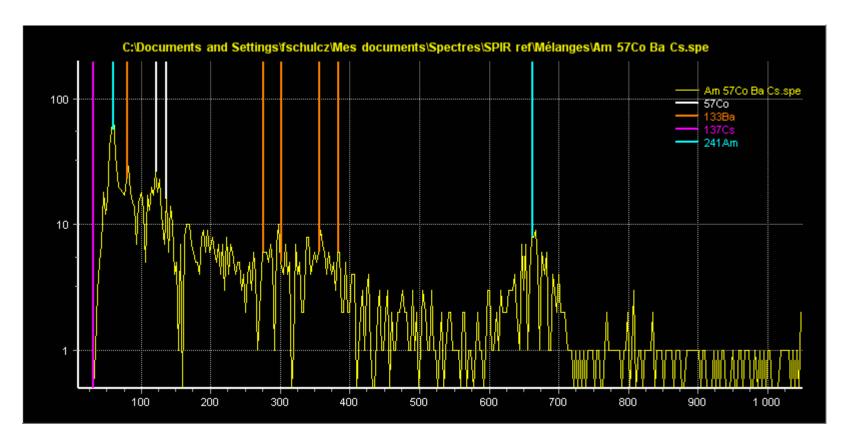


### Exemples en recherche mobile






Weak LEU identified in 2 seconds from road passing by an enrichment facility

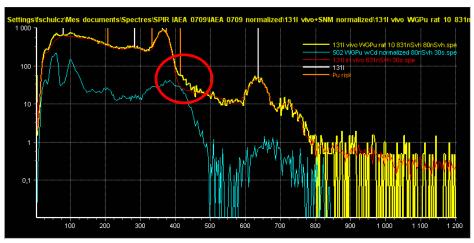


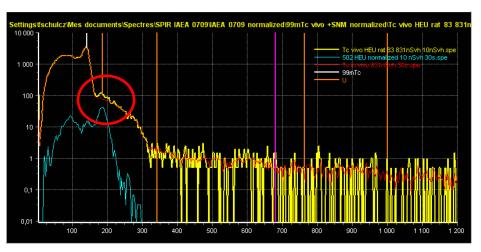

226Ra identified from road passing by a firebrick factory





# Exemple d'identification de mélange





Exemple de spectre pauvre de mélange (57Co, 133Ba, 137Cs, 241Am)





## Illustration de cas de masquage





Spectre et décision en 2s

- WGPu + 131I
  - 131I 60000cps
  - Pu 5700cps
  - Ratio 1:10

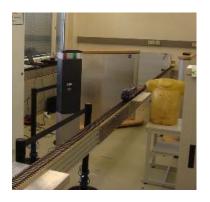
pas de pic additionnel dû au Pu

- HEU + 99mTc
  - 99mTc 75000 cps
  - HEU 850 cps
  - Ratio 1:80

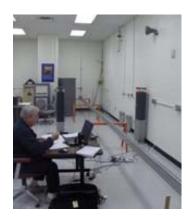
HEU noyé dans le pile-up résiduel du 99mTC



# Test systématique de masquages


| Version<br>210809 | Ratio   | HEU |     |         | LEU |              |       | Pu61<br>0507 |     |               | WGPu |               |       |
|-------------------|---------|-----|-----|---------|-----|--------------|-------|--------------|-----|---------------|------|---------------|-------|
| time 2s           |         | Med | SNM | autre   | Med | SNM          | autre | Med          | SNM | autre         | Med  | SNM           | autre |
| 99mTc in<br>vivo  | 20 / 23 | 100 | 100 |         | 100 | 85<br>7 unid |       | 100          | 99  | Am,<br>4 Unid | 100  | 100           |       |
|                   | 10 / 12 | 100 | 100 |         | 100 | 100          |       | 100          | 100 |               | 100  | 100           |       |
| 99mTc             | 20 / 23 | 100 | 100 |         | 100 | 84           |       | 100          | 65  |               | 100  | 100           |       |
|                   | 10 / 12 | 100 | 100 |         | 100 | 100          |       | 100          | 99  | 3cs           | 100  | 100           |       |
| 131I in<br>vivo   | 20 / 23 | 100 | 100 | 8 unid  | 100 | 73<br>1 unid |       | 100          | 6   |               | 100  | 37<br>12 unid |       |
| VIVO              | 10 / 12 | 100 | 100 | 8 unid  | 100 | 100          |       | 100          | 100 | 16<br>unid    | 100  | 100           |       |
|                   | 7/8     | 100 | 100 | 17 unid | 100 | 100          |       |              |     | uc            | 100  | 100           |       |
| 1311              | 20 / 23 | 100 | 100 |         | 100 | 42           |       | 100          | 0   |               | 100  | 12            |       |
|                   | 10 / 12 | 100 | 100 |         | 100 | 100          |       | 100          | 100 | 6 unid        | 100  | 98            |       |
|                   | 7/8     |     |     |         | 100 | 100          |       | 100          | 100 | 20<br>unid    | 100  | 100           |       |
| 67Ga in<br>vivo   | 20 / 23 | 100 | 77  |         | 100 | 31           |       | 100          | 40  | U. I.U        | 100  | 100           |       |
|                   | 10 / 12 | 100 | 100 |         | 100 | 97           |       | 100          | 100 | 3<br>Cscs     | 100  | 100           |       |
| 67Ga              | 20 / 23 | 100 | 2   |         | 100 | 35           |       | 100          | 97  | 3 Cs          | 100  | 95            |       |
|                   | 10 / 12 | 100 | 96  |         | 100 | 96           |       | 100          | 100 |               | 100  | 100           |       |
| 201Tl in<br>vivo  | 20 / 23 | 100 | 73  |         | 100 | 56           |       | 100          | 100 | 4 Cs          | 100  | 100           |       |
|                   | 10 / 12 | 100 | 90  |         | 100 | 95           |       | 100          | 100 | 6 Cs          | 100  | 100           |       |
| 201TI             | 20 / 23 | 100 | 60  |         | 100 | 70           |       | 100          | 100 |               | 100  | 100           |       |
|                   | 10 / 12 | 100 | 75  |         | 100 | 100          |       | 100          | 100 | 3 Cs          | 100  | 100           |       |

- Exemple d'étude par injection après une amélioration d'algorithme
- Med ( 99mTc,131I, 67Ga, 201TI), in vivo ou non combiné avec HEU, LEU, RGPu, WGPu
- ratio de 1 à 20 ( ie 50 nSv/h SNM à 1000 nSv/h Médical)
- 100 spectres de 2s pour chaque cas.
- Très bon résultats jusqu'à 1/10. Selon scénario au delà
- Noter les très bons résultats pour Ga + HEU, Ga + Pu, TI +HEU






#### **Evaluations internationales**



Seibersdorf (Austria) lab test



ORNL lab test

- Evaluation IAEA (2007et 2008, Seibersdorf) : sensibilité et détection de masquages portique piéton
- Conformité ANSI N42-38 par ORNL (2008, Oak Ridge USA)
- Evaluation par PNNL (2009, USA) dans le cadre du programme Guardian
- Benchmarking par le DNDO (2009, centre d'essai du Nevada) dans le cadre du programme PaxBag (contrôle des passagers et bagages)
- Benchmarking par le DNDO (centre d'essai du Nevada) dans le cadre du programme MPRDS ( moyen mobile de détection radiologique)



# Partie 5 Evaluation à Aéroport de Vienne



#### Objectif

- évaluation présence, nature, fréquence et intensité des sources dans un contexte réaliste
- Évaluation de la capacité d'identifier au vol pour une discrimination instantanée

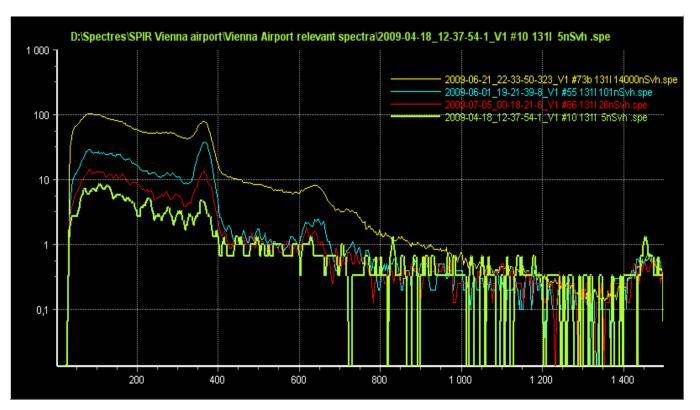
#### Méthode

- SPIR-Ident Piéton 2 litre
- Enregistrement permanent spectres et décisions
- Comptage des passagers
- Vérification manuelle des décisions par inspection des spectres





# Synthèse des résultats (160j)


| all events     | all levels | all levels | max>15   | max>15     | max>25   | max>25     |
|----------------|------------|------------|----------|------------|----------|------------|
|                |            |            | nSv/h    | nSv/h      | nSv/h    | nSv/h      |
|                | detected   | identified | detected | identified | detected | identified |
| 201TI          | 92         | 54         | 53       | 50         | 45       | 45         |
| 99mTc          | 35         | 30         | 15       | 15         | 12       | 12         |
| 1311           | 25         | 22         | 18       | 18         | 16       | 16         |
| 226Ra          | 7          | 3          | 4        | 2          | 0        | 0          |
| <b>125I?</b>   | 5          | 0          | 0        | 0          | 0        | 0          |
| 111In          | 1          | 1          | 1        | 1          | 1        | 1          |
| 67Ga           | 1          | 1          | 1        | 1          | 1        | 1          |
| unknown        | 1          | 1          | 0        | 0          | 0        | 0          |
| possible Th    | 1          | 0          | 1        | 0          | 0        | 0          |
| 123I           | 1          | 1          | 0        | 0          | 0        | 0          |
| 131I + Pu risk | 1          | 1          | 0        | 0          | 0        | 0          |
| Total          | 170        | 114        | 93       | 87         | 75       | 75         |
| % identified   |            | <b>67%</b> |          | 94%        |          | 100%       |

Tous les évènements avec un pic de débit de dose > 25 nSv/h ont été dynamiquement identifiés.





### Exemple de spectres réalistes



<sup>131</sup>I in-vivo spectres typiques selon débit de dose max vu: niveau très faible (<15nSv/h), faible (~25nSv/h), moyen(~100nSv/h) et très fort (14μSv/h)





### Retour d'expérience Aéroport de vienne

#### Nombre et type d'évènements

- 170 évènements en 160 jours, un pour environ 7000 passagers
- 201Tl 55% des cas, puis 99mTc 20% et 131l 15%
- Les autres cas sont marginaux, noter plusieurs cas de Radium
- Le taux d'alarmes statistiques est très bas (2 cas par mois)

#### Intensité des évènements

- Très grande sensibilité du SPIR-Ident, LD quelques nSv/h
- Environ 55% <25nSvh max, 45% >, dont env 5% > 1μSv/h

#### Capacité d'identification dynamique

- 94% des évènements >15nSv/h max et 100% si >25 nSv/h max sont identifiés au vol. Pas de confusion d'isotope observé,
- Pas de faux positifs malgré des cas de comptage saturant

Le portique spectrométrique est extrêmement sensible et se révèle capable de traiter >94% des événements au vol

