

FLUX ET BILAN DES PRINCIPAUX RADIONUCLÉIDES D'ORIGINE ARTIFICIELLE PRÉSENTS DANS LE RHÔNE

Frédérique **EYROLLE-BOYER**, Damien **TOURNIEUX**, Christelle **ANTONELLI**

Institut de Radioprotection et de Sûreté Nucléaire

PRP-ENV/SESURE

LERCM, Centre de Cadarache, BP 3, 13106 Saint Paul Lez Durance LS3E, 31, Rue de l'Écluse, BP 35, 78116 Le Vésinet

ORIGINE DE LA RADIOACTIVITÉ DES EAUX DU RHÔNE

Radioactivité d'origine naturelle

✓ Origine tellurique: Radionucléides à vie très longue présents dans la croûte terrestre :

Le ⁴⁰K et les éléments des chaînes de l'²³⁸U et du ²³²Th principalement, incluant en outre les isotopes du radium (²²⁶Ra, ²²⁸Ra, ²²⁴Ra).

✓ Origine cosmogénique: Radionucléides formés par l'action des rayons cosmiques puis déposés à la surface terrestre principalement par les précipitations :

Le ³H, le ¹⁴C et le ⁷Be, notamment.

Transfert vers les milieux aquatiques via les processus d'érosion et de drainage des sols du bassin versant.

Niveaux constants au cours du temps (échelle humaine)

ORIGINE DE LA RADIOACTIVITÉ DES EAUX DU RHÔNE

Radioactivité d'origine artificielle

 ✓ Les retombées atmosphériques globales et de l'accident de Tchernobyl* :

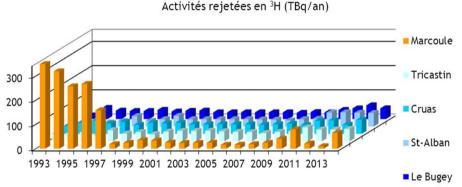
Rémanence dans l'environnement des radionucléides à vie moyenne à longue tels que le ¹³⁷Cs*, le ⁹⁰Sr et les isotopes du plutonium.

Niveaux en 🔰 au cours du temps (Décroissance radioactive, épuisement progressifs des stocks)

✓ Les rejets des centres hospitaliers:

Radionucléides de périodes très courtes dont seul l'131 est régulièrement mesuré dans les eaux du Rhône.

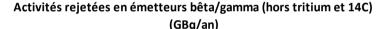
✓ Les rejets liquides de l'industrie nucléaire:

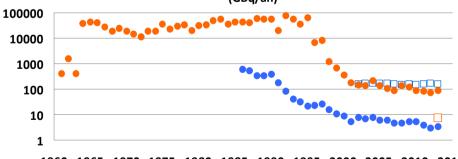

Principalement le centre de retraitement du combustible irradié de Marcoule et les C.N.P.E. de Bugey, Saint Alban, Cruas et Tricastin.

LES REJETS LIQUIDES DANS LE RHÔNE

✓ Les quantités rejetées les plus importantes concernent le tritium

295 TBq en 2013 (toutes installations rhodaniennes confondues)




75% par les CNPE rhodaniens 25% par le centre de de Marcoule

√ Le ¹⁴C

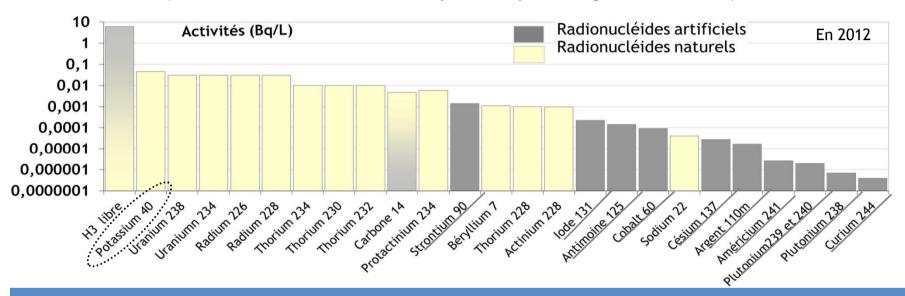
167 GBq en 2013 (toutes installations rhodaniennes confondues)

> 96% par les CNPE rhodaniens, 4% par le centre de Marcoule.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

- □ 14C CNPE rhodaniens (GBq/an)
- 14C Marcoule (GBg/an)
- Emetteurs bêta/gamma (Hors tritium et 14C) Marcoule (GBq/an)
- Emetteurs bêta/gamma (hors tritium et 14C) CNPE rhodaniens (GBq/an)

✓ Les émetteurs bêta/gamma (hors tritium et ¹⁴C)


92 GBq en 2013 (toutes installations rhodaniennes confondues)

5% par les CNPE rhodaniens, 95% par le centre de Marcoule.

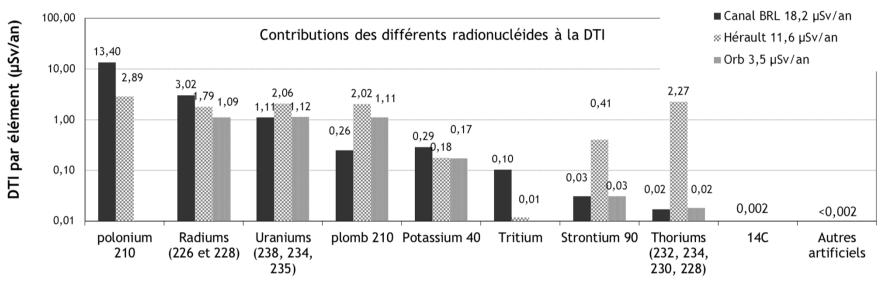
✓ Les quantités rejetées sont en Excepté pour le tritium et le ¹⁴C

✓ Radioactivité artificielle / Radioactivité naturelle

Exemple des radionucléides naturels et artificiels détectés dans <u>les eaux filtrées</u> du Rhône aval (Réseau de surveillance de l'IRSN : Hydrotéléray Vallabrègues et SORA Arles)

✓ Le tritium présente les niveaux d'activité les plus importants (1 à 15 Bq/L), supérieurs à ceux du ⁴⁰K d'origine naturelle (de l'ordre de 0,05 Bq/L),

Plus de 95% du tritium est d'origine anthropique

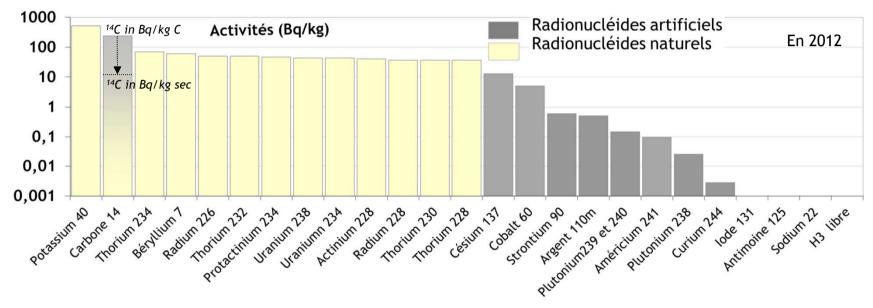

✓ Les niveaux en ¹⁴C sont de l'ordre de 0,005 Bq/L (pour 20mg/L de CID),

30 à 50 % du ¹⁴C est d'origine anthropique

✓ Les niveaux des autres radionucléides artificiels sont inférieurs à 0,001 Bq/L.

QUELS SONT LES CONTRIBUTEURS À LA DOSE PAR CONSOMMATION DE L'EAU DU RHÔNE ?

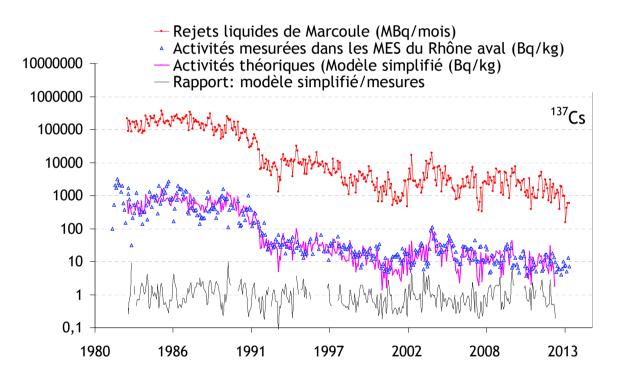
 ✓ Calcul de la Dose Totale Indicative (DTI) par consommation de l'eau filtrée du Rhône aval (Canal Languedoc-Roussillon)



Pour un adulte, 2L d'eau par jour

- ✓ les principaux contributeurs à la DTI sont les radionucléides naturels (²¹⁰Po, radiums et uraniums, principalement),
- ✓ Le tritium contribue pour moins de 0,5%
- √ Le ¹⁴C contribue pour moins de 0,01%
- ✓ Pas de différence significative avec les fleuves côtiers de la région et DTI < 100 µS/an

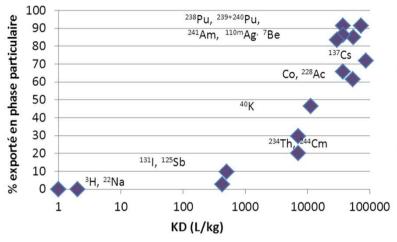
✓ Radioactivité artificielle / Radioactivité naturelle


Exemple des radionucléides naturels et artificiels détectés dans <u>les matières en suspension</u> du Rhône aval (Réseau de surveillance de l'IRSN, Hydrotéléray Vallabrègues et SORA Arles)

- ✓ Le ¹⁴C présente des niveaux d'activité de 150 à 350 Bq/kg C (10 à 20 Bq/kg sec),
- ✓ Niveaux en ¹⁴C supérieurs au bruit de fond des sédiments des cours d'eau non anthropisés (95 à 234 Bq/kg C),
- √ Les niveaux d'activités des autres radionucléides artificiels sont similaires (¹³7Cs) à ceux du ¹⁴C ou inférieurs de 1 à 5 ordres de grandeur.

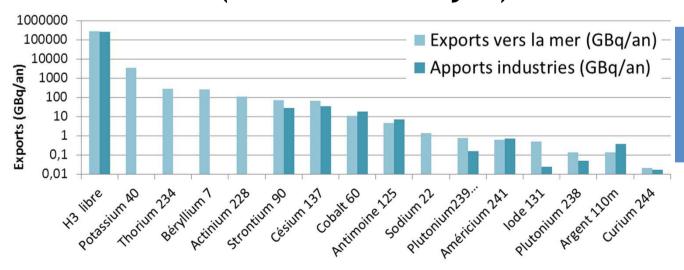
✓ Activités mesurées / Activités théoriques (modèle)

Exemple du ¹³⁷Cs dans le Rhône aval


Modèle simplifié:

$$A = \frac{M}{MFS \times Q} \times \%_{MES}$$

✓ Les activités mesurées sont (très bien) expliquées par les rejets liquides du centre de Marcoule (98,2 %). A, Activité en ¹³⁷Cs des MES (Bq/kgsec), M, les rejets liquides de Marcoule (Bq/s), Q, le débit moyen mensuel (m3/s), MES, la concentration en MES (mg/L) %MES la proportion de 137Cs fixée sur les particules. Données d'entrée: charge moyenne en MES de 50 mg/L et 85% de l'activité transférés associée aux particules (25% transite en phase dissoute).



√ Les flux vers le milieu marin (SORA)

- ✓ Les proportions exportées sous forme solides varient fortement d'un élément à l'autre
- ✓ Fonction du K_D

Les flux sont expliqués par les apports des industries : bilans de masse équilibrés dans

la grande majorité des

cas.

CONCLUSIONS

- Aujourd'hui, les radionucléides artificiels majoritaires rejetés dans le Rhône sont le tritium et le ¹⁴C,
- Le tritium est le radionucléide prépondérant des eaux filtrées (95% proviennent des industries),
- Le ¹⁴C est l'un des radionucléides prépondérant des MES (30 à 50% proviennent des industries),
- Ces deux éléments contribuent à moins de 0,5% de la DTI liée à la consommation d'eau du Rhône (rendue potable !),
- Les données du réseau de surveillance permettent de quantifier les différentes composantes de la radioactivité des eaux et de connaître la contribution des différents termes source,
- Connaissant les rejets, de simples calculs de dilution permettent de connaître les activités Mais l'on ne connaît pas toujours les rejets (!!),
- Les données de la surveillance permettent de réaliser des bilans de masse et de 'vérifier' que les exports (flux sortants) sont proportionnels aux quantités introduites (flux entrants),
- Elles permettent ainsi la comptabilité des flux en transit, et en particulier ceux exportés vers le milieu marin.

Merci de votre attention

La station Observatoire du Rhône à Arles - SORA (Réseau de Surveillance de l'IRSN)

La station de surveillance du réseau Hydrotéléray (Vallabrègues) - Cuve de décantation des eaux et hydro collecteur.