Application des codes FLUKA et ActiWiz pour l'élimination inconditionnelle des cavités supraconductrices du grand collisionneur électron-positon du CERN

Fabio POZZI, C. DUCHEMIN, M. MAGISTRIS, M. SILARI CERN, Genève, Suisse

O1 et 02 FÉVRIER 2018

CODES DE CALCUL EN RADIOPROTECTION, RADIOPHYSIQUE ET DOSIMÉTRIE

Plan de la présentation

- 1. Introduction: le LEP, les cavités SC et la libération inconditionnelle en Suisse
- 2. FLUKA et ActiWiz: pourquoi?
- 3. Caractérisation radiologique
 - a) FLUKA fluence de particules
 - b) ActiWiz scénarios d'activation
 - c) ActiWiz mélange de radionucléides
 - d) Radionucléides ETM vs DTM
 - e) ActiWiz ratios d'activités (scaling factors SFs)
- 4. Conclusions: chiffres et points clés du projet

Introduction 1/2: le collisionneur LEP et les cavités SC

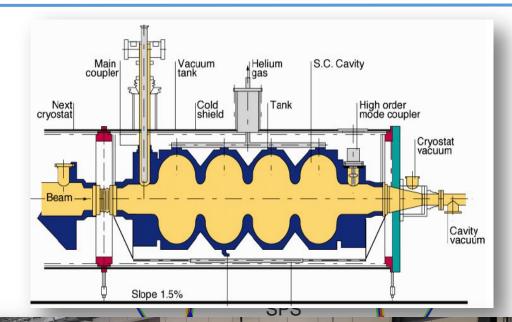
LEP: Large Electron-Positron collider

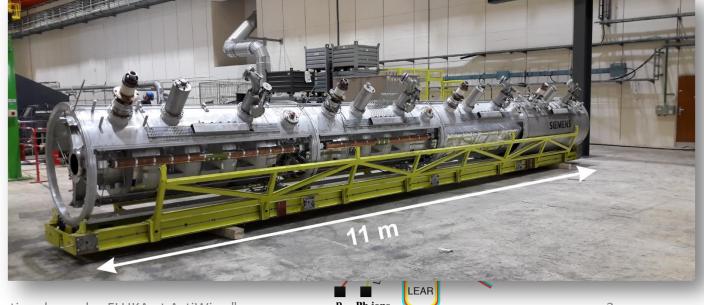
1985: début construction du LEP (anneau de

27 km)

1989: mise en service du LEP: 91 GeV

1995 – 1999: 288 cavités supraconductrices


installées


2000: 209 GeV

2001: démantèlement pour faire place au LHC

4 cellules de OFHC Cu + Nb (1.5 μm)

1 cryomodule composé de 4 cavités (~11 m)

Introduction 2/2: la libération inconditionnelle en Suisse

72 cryomodules (68 Cu pur avec film en Nb, 4 Nb pur)

Occupation de **2000 m**³ (444 tons) dans la zone de stockage temporaire du CERN (ISR)

Type de déchets	Destination
Faible activité (FA)	FR
Très faible activité (TFA)	FR+ CH
Libération inconditionnelle	СН

Libération inconditionnelle en Suisse si (voir ORaP 1994, Ordonnance sur la RadioProtection):

- 1. Contamination surfacique < limite CS
- 2. $H^*(10)$ à 10 cm < 0.1 μ Sv/h (après déduction bdf)
- 3. Activité spécifique < limite LE (ou $\underset{i}{\overset{\circ}{a_i}} \frac{a_i}{LE_i} < 1$)

Matériel	Mass (tonnes)
Al	141.4
Inox/Cu mix	93.8
Inox	92.3
SS	78.7
Cu et similaires	14.0
Ni	7.1
Câbles	7.1
Nb	2.8

FLUKA et ActiWiz: pourquoi?

Souvent il faudrait trop (?) de mesures expérimentales pour avoir une connaissance détaillée du problème

Méthode Monte Carlo!

- Caractérisation radiologique (ex. compréhension des phénomènes d'activation)
- Justification des méthodes (ex. échantillonnage par suspicion)
- Quantification des radionucléides non mesurables en spectrométrie gamma

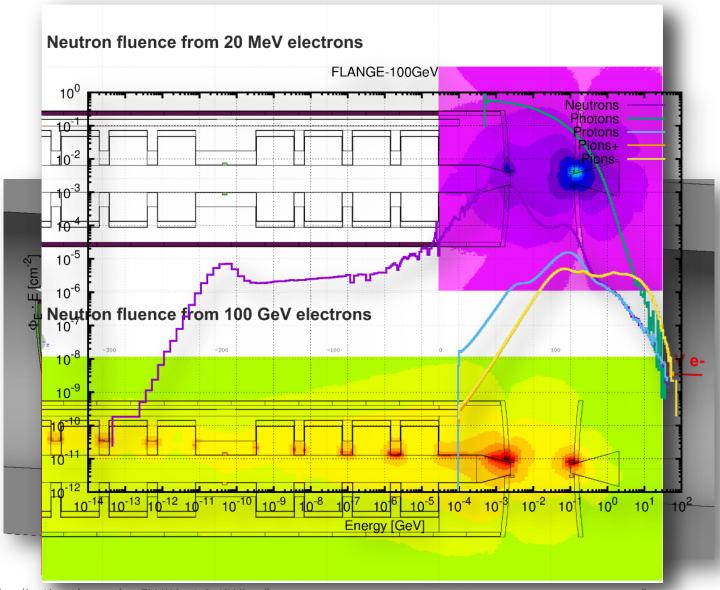
FLUKA

- Fluence de particules
- Inventaire des radionucléides (préliminaire!)

ActiWiz 3 Creator

- Evaluation des scénarios d'activation
- Inventaire des radionucléides (final!)
- Influence des impuretés
- Ratios d'activités

Caractérisation radiologique: FLUKA – fluence de particules



Deux scénarios d'activation:

- 1. Electrons « field emitted » (10 40 MeV)
- Pertes faisceau dans le système RF (jusqu'à 100 GeV)

Paramètres FLUKA

- Faisceau: électrons à 20 MeV et à 100 GeV
- Réactions photo-nucléaires (γ,n)
- Inelastic hadronic interaction biasing pour les photons

Caractérisation radiologique: ActiWiz – scénarios d'activation

Paramètres:

• Fluence de particules (photons, neutrons, pions +/-, protons): FLUKA

Temps d'irradiation: 2 ans

Temps de décroissance: 16 ans

Composition chimique: mesures XRF (ex. Co-59 0.1% pour inox)

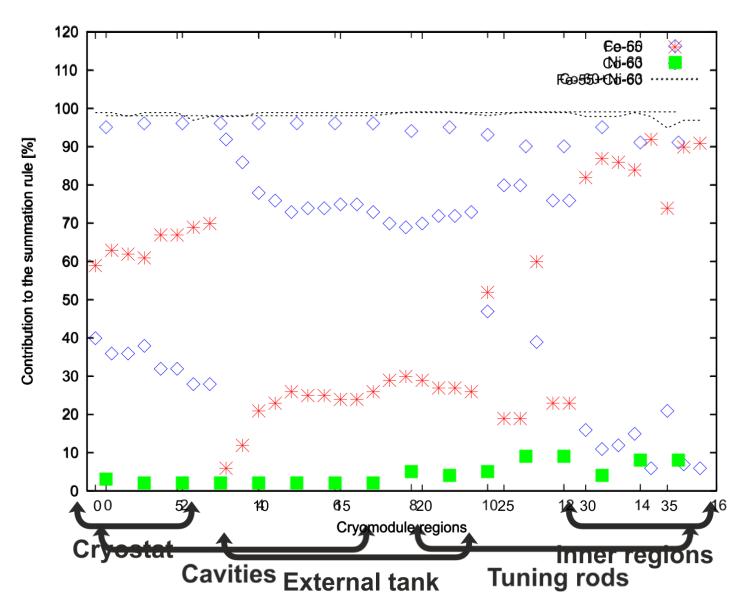
Règle d'addition (Critère à respecter pour l'activité spécifique)

$$\mathring{a}_{i} \frac{a_{i}}{LE_{i}} < 1$$

Inox: contribution à la règle d'addition				
20 MeV 100 GeV				
Fe-55	10% - 99%	5%-90%		
Co-60	1% - 90%	10%-95%		

Inox: considérations				
20 MeV 100 GeV Expt.				
H-3/Co-60	10 ⁻⁶ – 10 ⁻³	0.1 – 10	0.1 – 1.0	
Co-60 _{inox} / Co-60 _{cuivre}	> 1000 fois	< 10 fois	1 – 20	

Caractérisation radiologique: ActiWiz – mélange des radionucléides



Les <u>radionucléides</u> qui <u>contribuent</u>
ensemble et de manière conservative <u>pour</u>
<u>moins de 10%</u> dans la règle d'addition
<u>peuvent être négligés</u> lors du mesurage de libération.

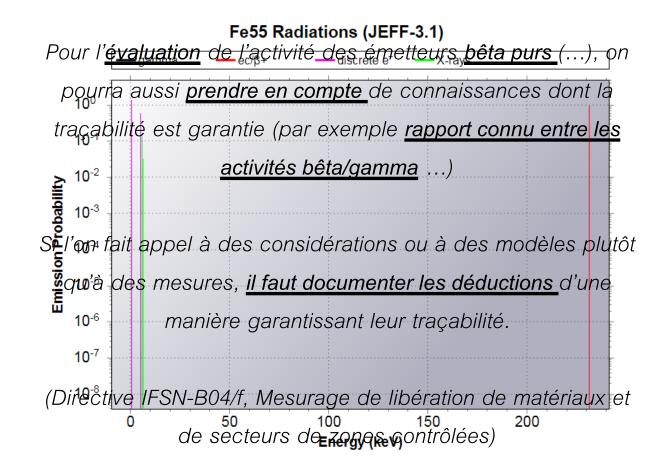
(Directive IFSN-B04/f, Mesurage de libération de matériaux et de secteurs de zones contrôlées)

1^{er} exemple: l'inox

2^{ème} exemple: <mark>le cuivre</mark>

Caractérisation radiologique: radionucléides ETM vs DTM

Easy-To-Measure =

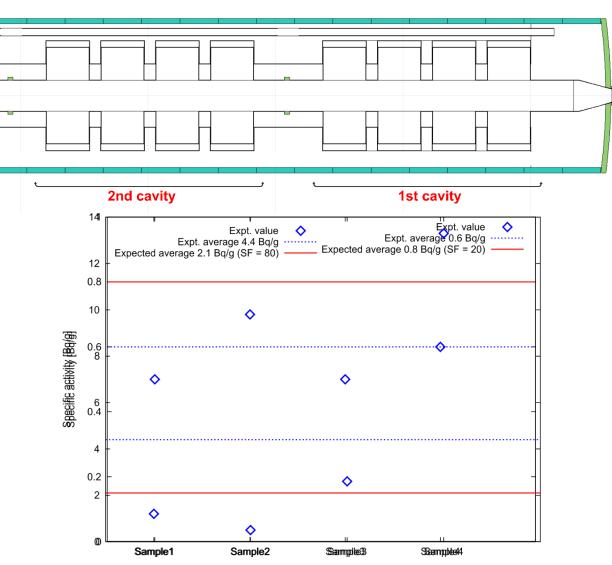

radionucléide mesurable en spectrométrie gamma

Difficult-To-Measure =

radionucléide non mesurable en spectrométrie gamma

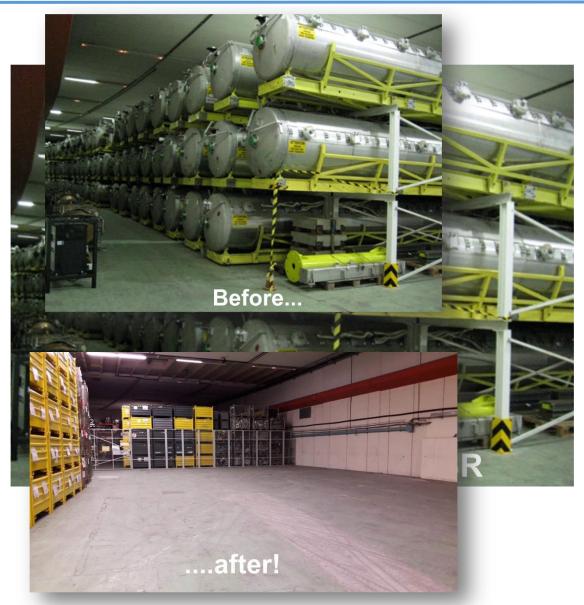
Comment quantifier les DTM dans la pratique?

- 1. Analyse radiochimique
- 2. Ratios d'activités


Caractérisation radiologique: ActiWiz – ratios d'activités (scaling factors SFs)

Cryomodule LEP divisé en régions (ex. cryostat, tank externe, cavité en Cu)

- 2. Calcul de SFs pour plusieurs sous-régions
- 3. Choix du max. SFs pour chaque région
- 4. Validation avec mesures expérimentales
 - a) Calcul de l'activité expt. moyenne du *DTM*
 - b) Calcul de l'activité estimée par SF
 - c) Si A_{esti,Fe55} >= A_{expt,Fe55} → validé
 - d) Autrement établissement d'un nouveau SF


SF pour Fe-55/Co-60 dans l'inox

Conclusions 1/2: chiffres clés

- Début du projet: Avr. 2016
- Phase opérationnelle: Mars 2017 Nov. 2017
- ~444 tonnes de matériel à éliminer
- 73 protocoles remplis, soumis à l'OFSP et approuvés
- 15.9 tonnes de matériel restant au CERN (en exposition)
- 22.7 tonnes de matériel déclaré comme TFA
- 405 tonnes de matériel déclaré comme conventionnel

Conclusions 2/2: points clés

- Travail d'équipe
- Implication et support du management CERN
- Contributions fondamentales du code Monte Carlo FLUKA et du code analytique
 ActiWiz 3 Creator

Back-up slides

Caractérisation radiologique: ActiWiz – ratios d'activités (scaling factors SFs)

Validation

Etablissement d'un nouveau SF

<u>Table 18</u>: Experimental and analytical Fe-55 activities for module 133588, stainless steel sheets, cavity 1.

TREC ID	Type of sample	Exp. Fe-55 [Bq/g]	Exp. average Fe-55	Estimated Fe-55 SF = 20 [Bq/g]
CR-011475	Screws tank C1-2	< 0.5		
CR-011483	Screws tuner 1	< 0.7	< 0.6	0.8
CR-037683	Screws and bolts	< 0.5	0.0	0.8
CR-037750	Screws flange 1G	< 0.6		

<u>Table 19</u>: Experimental and analytical Fe-55 activities for module 133558, stainless steel sheets, cavity 4.

TREC ID	Type of sample	Exp. Fe-55 [Bq/g]	Exp. average Fe-55	Estimated Fe-55 SF = 20 [Bq/g]
CR-011484	Screws flange 4G	< 0.5		
CR-037743	Fixation tank 4G	< 0.5	< 0.6	0.2
CR-037687	Screws and bolts	< 0.7		

<u>Table 20</u>: Experimental and analytical Fe-55 activities for module 133595, stainless steel sheets.

TREC ID	Type of sample	Fe-55 [Bq/g]	Exp. average Fe-55 [Bq/g]	Estimated Fe-55 SF = 20 [Bq/g]
CR-049569	Pipe	< 0.7		
CR-049580	Fixation of tank plate	< 0.8	< 0.7	1.1
CR-049576	Screw	< 0.6		

Table 22: Experimental and analytical Fe-55 activities for module 133588, cryostat, cavity 1.

TREC ID	Type of sample	Fe-55 [Bq/g]	Exp. average Fe-55 [Bq/g]	Estimated Fe-55 SF = 80 [Bq/g]
CR-044676	Screws up 1	< 1.2		
CR-044679	Screws ring up 1	< 0.5	< 4.4	2.1
CR-044686	Screw B1-12	2.6	_ \ 4.4	2.1
CR-044688	Screw B1-24	13.3		

<u>Table 23</u>: Experimental and analytical Fe-55 activities for module 133588, cryostat, cavity 4.

TREC ID	Type of sample	Fe-55 [Bq/g]	Exp. average Fe-55 [Bq/g]	Estimated Fe-55 SF = 80 [Bq/g]
CR-044690	Screws Up-4	< 0.66		
CR-044693	Screws RingUp-4-3	< 0.66		
CR-044695	Bellow down 4	18.4	< 6.7	3.5
CR-044699	Screw B4-12	6.6		
CR-044700	Screw B4-18	7		

Caractérisation radiologique: ActiWiz – influence des impuretés chimiques

Un exemple: l'inox

Traces de cobalt provenant de l'utilisation de Nickel et d'acier recyclé

Généralement entre 0.05% et 0.2%

Quel impact? -> ActiWiz

Quelle solution? -> Mesures XRF

```
Irradiation scenario: from fluence spectra
* 1.) beam intensity: 1 p/s --> prompt dose = 3.33E+01 uSv/h, irradiation: 6.3072E+07 s (2 years), cooling: 5.04576E+08 s (16 years)
 Selected hazard factor: Waste clearance (Swiss LE limits, StSV 4/4/2000)
                                                      TOP CONTRIBUTORS
Top contributors (> 1%) to total sum of activity/limit = 1.14E-05 +/- 0.04%:
Total activity: 4.07E-05 Bq/g +/- 0.04%
Co-60
                                  1.66337e+08 s [Source: COBALT : 97.23%, COPPER 8.63082e+07 s [Source: CHROMIUM : 0.00%, COBALT
Fe-55
Compound: "55 test worst case", density 7.71 g/cm3
The following table shows how much each component of the compound material contributes
to the selected hazard quantity: Waste clearance (Swiss LE limits, StSV 4/4/2000)
            89.81%
COBALT
                        (weight fraction:
                                              0.103\%
IRON
             6.48%
                        (weight fraction:
                                               67.1%)
                        (weight fraction:
NICKEL
                                               9.88%
CHROMIUM
             0.11%
                                              15.8%
             0.05%
                        (weight fraction:
ALUMINUM
                                              2.92%
                                              0.216%
                                              1.44%)
                        (weight fraction:
                                               0.61%
MANGANESE : < 0.01%
                        (weight fraction:
                                              1.66%
NIOBIUM
                        (weight fraction:
                                            0.00939%
                        (weight fraction:
                                            0.0282%
TITANIUM
         : < 0.01%
                        (weight fraction:
                                            0.0469%
          : < 0.01%
                        (weight fraction:
                                            0.00939%
ZIRCONIUM : < 0.01%
                        (weight fraction:
                                            0.0188%
                        (weight fraction:
TUNGSTEN : < 0.01%
                                            0.0375%)
         : < 0.01%
                        (weight fraction:
                                            0.0563\%
VANADIUM : < 0.01%
                        (weight fraction:
                                            0.0563\%
```