IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE Comparaisons en dosimétrie des neutrons Calculs MCNPX, mesures opérationnelles et spectrométrie

Faire avancer la sûreté nucléaire

Michaël PETIT, Véronique LACOSTE, Vincent GRESSIER IRSN/PSE-SANTE/SDOS/LMDN Cadarache - France Congrès SFRP Codes de calculs 2 Février 2018- Sochaux

Présentation du LMDN

Laboratoire de micro-irradiation, de métrologie et de dosimétrie des neutrons

- Laboratoire associé au LNE (institut national de métrologie) pour la métrologie des neutrons
- Une zone expérimentale de 300 m de rayon (STIRCA)
- Deux installations et quatre dispositifs expérimentaux dont trois de production de neutrons

Congrès SFRP : " Comparaisons opérationnelles calculs / Mesures / expertises Michaël PETIT - 02/02/2018 Sochaux

IRS

Installations experimentales du LMDN 1/2

Installation CEZANE :

- Un irradiateur neutron avec des sources de ²⁴¹AmBe, de ²⁵²Cf et de ¹³⁷Cs (Van Gogh)
 - Référence primaire pour les grandeurs de fluence et d'équivalent de dose neutrons.
- Un accélérateur T400 (400 kV) à fort courant
 - Couplé avec le dispositif CANEL pour créer des champs réalistes
 - Couplé avec un bloc modérateur en graphite pour créer un champ thermique (en projet)

Accélérateur T400 avec CANEL

Irradiateur Van Gogh

Installations expérimentales du LMDN 2/2

Installation AMANDE-MIRCOM : un accélérateur Tandetron de 2 MV qui alimente

- une ligne dédiée à la production de champ neutronique monoénergétique-> AMANDE (2004)
- une ligne dédiée à la micro-irradiation cellulaire -> MIRCOM (2016)

Congrès SFRP : " Comparaisons opérationnelles calculs / Mesures / expertises Michaël PETIT - 02/02/2018 Sochaux

Congrès SFRP : " Comparaisons opérationnelles calculs / Mesures / expertises Michaël PETIT - 02/02/2018 Sochaux

Modèle MCNPX de la zone STIRCA

Trois problématiques de modélisation traitées

- Modélisation des sources pour la production de neutrons par accélérateur
- Prise en compte de la topographie extérieure
- Détermination expérimentale de la composition des bétons des installations

Vue du modèle MCNPX réalisé

Sources neutroniques par accélérateur

Modélisation des sources

- Logiciel TARGET (PTB) + TARGET2MCNP (IRSN)
- Logiciel NeuSDesc (JRC-Geel)

Normalisation des sources

- Référence = long compteur
- Moniteurs

Détecteurs pour la normalisation

Modèle MCNPX - modélisation des extérieurs

Modèle MCNPX - composition des bétons

2016 2003

		MIRCOM	AMANDE	
densité		2,3	2,3	
Elément	Z	% massique		
Н	1	0,86%	0,65%	
В	5			
С	6	7,41%	6,40%	
N	7	0,19%	0,20%	
0	8	46,59%	45,83%	
F	9			
Na	11			
Mg	12	0,51%	0,65%	
AI	13	1,63%	1,73%	
Si	14	7,08%	11,55%	
Р	15			
S	16	0,21%	0,17%	
К	19	0,38%	0,38%	
Ca	20	34,13%	31,30%	
Ti	22	0,10%	0,10%	
Mn	25	0,03%	0,03%	
Fe	26	0,83%	0,83%	
Zn	30	0,00%	0,00%	
Ba	56			

Moyens de mesure de débit d'équivalent de dose

Radiamètre neutron Berthold LB6411

- Version mobile et fixes (balises)
- Incertitude minimale de 15%

IRS

Spectrométrie des neutrons

Système de sphères de Bonner HERMEIS

- Sphères de polyéthylène de taille variable (jusqu'à 15") avec au centre un compteur ³He
- Réponse dépendant de la taille de la sphère et de l'énergie incidente du neutron

Système de sphères de Bonner du LMDN

Fonctions de réponse évaluées pour les sphères de Bonner

Configurations expérimentales

Deux configurations

- Réaction "DD" d(²H, ³He)n à 432 kV -> neutrons de 3,4 MeV à 0°
- Réaction "DT" d(³H,⁴He)n à 432 kV -> neutrons de 15 MeV à 0°

Localisation des mesures

- Spectrométrie : Salle de commande d'AMANDE-MIRCOM
- Mesures radiamètres : diverses localisations

Localisation de la spectrométrie

Mur béton de 40 cm d'épaisseur

IRSI

Distribution théorique de la fluence

Michaël PETIT - 02/02/2018 Sochaux

14

Débit de dose et fluence

Résultats préliminaires

3,4 MeV neutrons	fluence en	Dose en
point d'expertise	(cm ⁻² .s ⁻¹)	μSv/h
Calcul MCNPX ; 1% Hydrogène - d=2,2	1,30 ± 0,05	0,287 ± 0,015
HERMEIS ; déconvolution GRAVEL	0,998 ± 0,064	0,282 ± 0,016

15 MeV neutrons	fluence en $(cm^{-2} s^{-1})$	Dose en
Calcul MCNPX ; 1% Hydrogène - d=2,2	13,96 ± 0,40	8,19±0,20
HERMEIS; déconvolution GRAVEL	15,85 ± 0,87	8,88 ± 0,55

Conclusions

Un modèle MCNPX spécifique

- Utilisation de modélisations adaptées à une source de neutrons générée par accélérateur
- Modélisation des extérieurs de l'installation par une technique simple et efficace
- Détermination expérimentale de la composition des bétons

Spectrométrie d'expertise

- Comparaison initiale : accord calcul/mesures pour la forme des spectres neutrons
 - Modélisation nécessitant :
 - de revoir la quantité d'hydrogène dans le béton !?
 - de prendre en compte hall complet (à venir)
 - Afin d'obtenir :
 - une amélioration de l'accord à 3,4 MeV et 15 MeV

Perspective

- Mesures à très faible debit de dose (< 0,1 µSv/h) avec le spectromètre neutrons HERMEIS</p>
- Mise à jour du modèle global de MCNPX
 - Meilleure estimation des neutrons diffusés (applications métrologique)
 - Évaluation de l'impact entre dispositifs (vérification métrologique)
 - Gestion de la radioprotection

Véronique LACOSTE (LMDN) qui a notamment réalisé la totalité de la spectrométrie neutron,

Vincent GRESSIER (LMDN), notamment pour la définition des sources neutronique,

Hervé GUEGAN (ARCANE) pour l'analyse des bétons

Pavel KLENOV et Rémi GOUTTEBROZE (Assystem) pour leurs contributions décisives aux modèles MCNPX

Merci de votre attention

