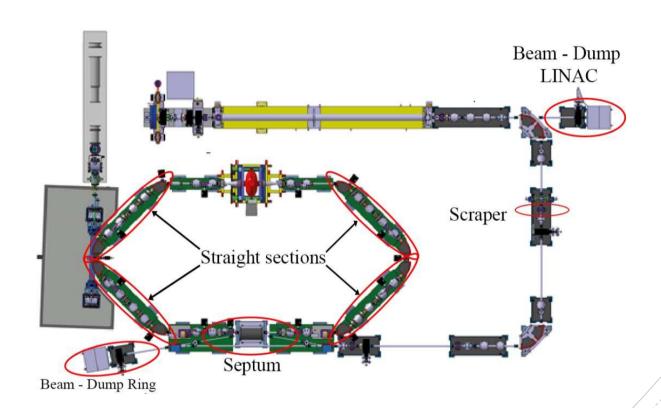


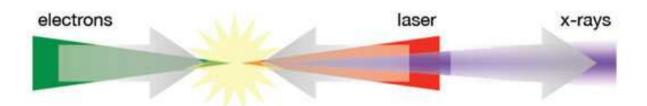
Evaluation du risque radiologique par FLUKA -ThomX, une source compacte de rayons X

Jean-Michel HORODYNSKI - CNRS/iRSD

Journées des codes de calcul en radioprotection, radiophysique et dosimétrie Sochaux, 2018


Sommaire

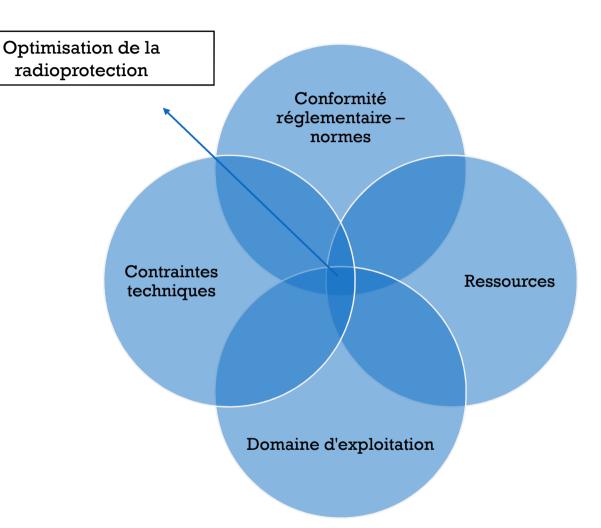
- Principes de fonctionnement de ThomX
- Optimisation de la radioprotection lors de la phase de conception d'une installation : l'apport de l'utilisation de codes de calculs Monte-Carlo de radioprotection
- Evolution des résultats des simulations numériques depuis 2014
- Développements à venir


ThomX
Source compacte
de rayons X
produits par effet
Compton inverse

ThomX Source compacte de rayons X produits par effet Compton inverse

Effet Compton inverse

- Dans le cadre de ThomX :
- Electrons de 50 Mev à 70 Mev, paquets de 1 nC, 50 Hz
- Photons incidents provenant d'un laser amplifié par une cavité Fabry-Perot (1030 nm, 2,6 µJ max)
- Rayons X produits: de 0 à 40 keV-90 keV, jusqu'à 10¹³ photons.s⁻¹

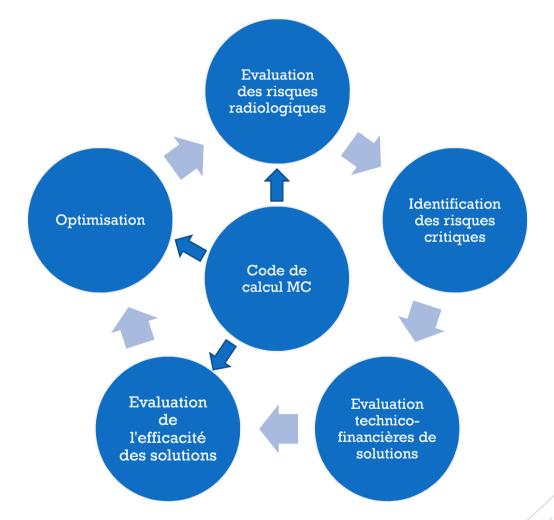


IRSD Ingenierie Radioprotection Süreté Démantélement

Optimisation de la radioprotection en phase de conception

Prise en compte au plus tôt

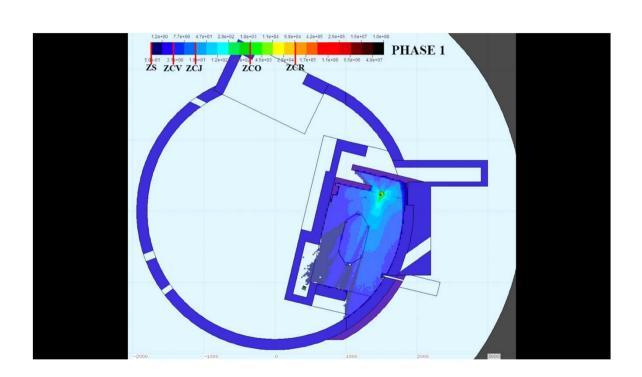
→Possibilité d'agir efficacement
sur les paramètres « flexibles »



Optimisation de la radioprotection en phase de conception

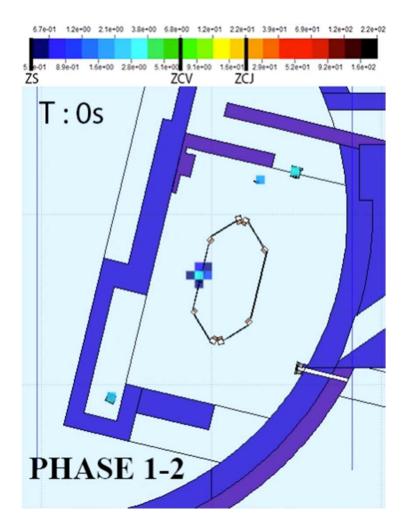
Utilisation du code de calcul Monte-Carlo avec une démarche itérative

Principale difficulté : définition du terme source

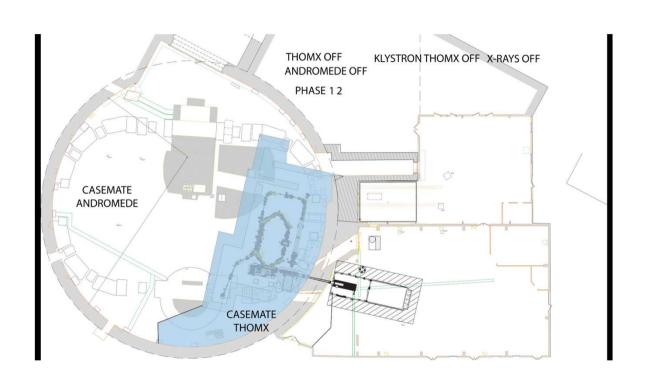


Code de calcul utilisé - FLUKA

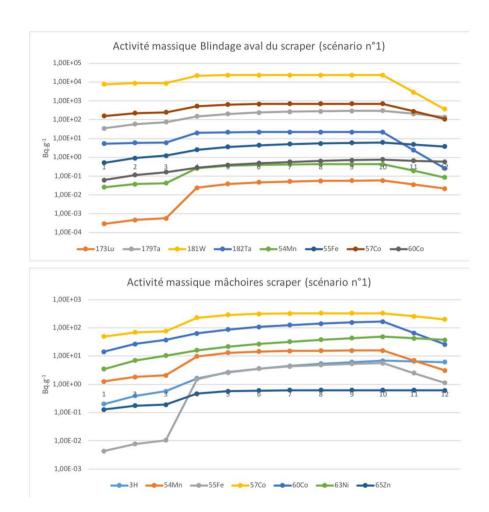
- Le choix s'est porté sur les critères suivants :
 - La possibilité d'utiliser une même modélisation (moyennant quelques optimisations) pour différentes études :
 - Design de blindages radiologiques
 - Zonage radioprotection
 - Etudes dosimétriques de postes de travail
 - Plan de gestion des déchets radioactifs
 - Activation de l'air/de l'eau
 - Code éprouvé pour les accélérateur d'électrons
 - Communauté d'entraide active et mises à jour régulières
 - Utilisation d'un même code pour les deux installations situées dans le même bâtiment (IGLEX, composé de ThomX et d'Andromède)



Débit d'équivalent de dose ambiant – Fonctionnement de l'accélérateur



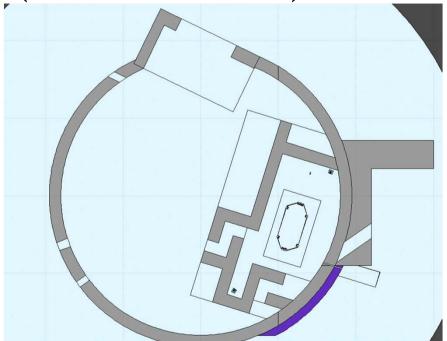
Débit d'équivalent de dose ambiant – Accélérateur à l'arrêt



Zonage radioprotection

Gestion des déchets radioactifs

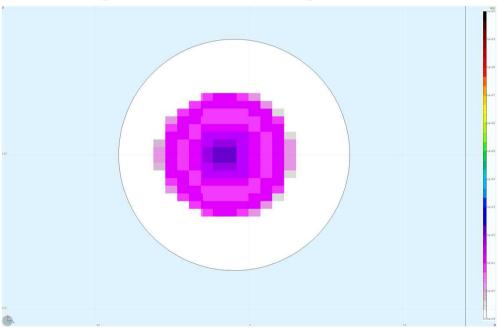
Gestion des déchets radioactifs


- Les déchets générés pourront être pris en charge conformément aux prescriptions radiologiques du Cires (déchets TFA)
- Les éléments critiques sont d'ors et déjà identifiés, et une surveillance pourra être mise en place en fonction des phases de fonctionnement de l'accélérateur.

Autres études réalisées

Protections collectives

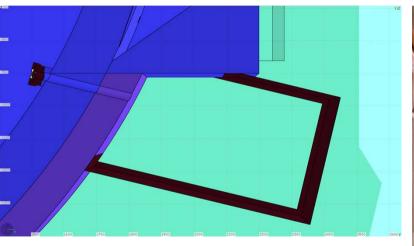
 Optimisation du blindage de la casemate accélérateur (250 tonnes de bétons en moins)



Autres études réalisées

Protections collectives

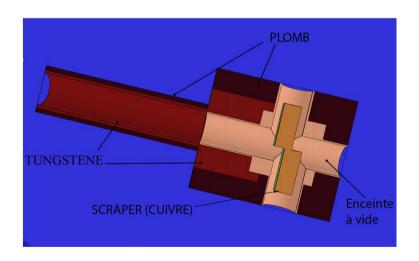
- Optimisation du blindage de la casemate accélérateur (250 tonnes de bétons en moins)
- Conception de la cabane d'expériences X



Autres études réalisées

Protections collectives

- Optimisation du blindage de la casemate accélérateur (250 tonnes de bétons en moins)
- Conception de la cabane d'expériences X

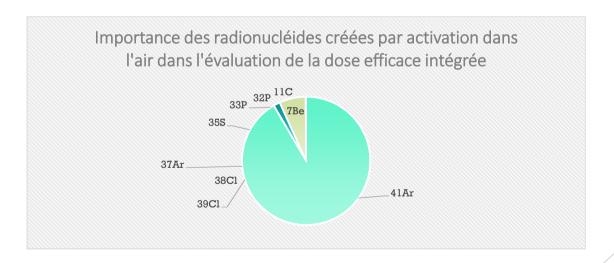


Autres études réalisées

Protections collectives

- Optimisation du blindage de la casemate accélérateur (250 tonnes de bétons en moins)
- Conception de la cabane d'expériences X
- Conception de blindages locaux

Autres études réalisées


- Protections collectives
 - Optimisation du blindage de la casemate accélérateur (250 tonnes de bétons en moins)
 - Conception de la cabane d'expériences X
 - Conception de blindages locaux
- Evaluation des risques radiologiques pour les travailleurs
 - Classement radiologique des personnels

Phase de fonctionne ment	Phase 1	Phase 2	Phase 2bis	Phase 3
Classement radiologique prévisionnel	-	В	В	В
Objectifs de dose (mSv.an ⁻¹)	-	0,8	1	1,5

Autres études réalisées

- Protections collectives
 - Optimisation du blindage de la casemate accélérateur (250 tonnes de bétons en moins)
 - Conception de la cabane d'expériences X
 - Conception de blindages locaux
- Evaluation des risques radiologiques pour les travailleurs
 - Classement radiologique des personnels
- Activation de l'air
 - Evaluation de l'exposition interne des intervenants
 - Evaluation de l'impact radiologique de l'extraction de l'air

Points forts -Difficultés

- La modularité du code FLUKA permet son utilisation pour l'évaluation des risques radiologiques d'un accélérateur de particules
- Il permet d'identifier les points critiques et de mettre en place des indicateurs de suivi lors du démarrage de l'exploitation
- Mais il est nécessaire que la définition du projet soit assez avancé pour réduire les temps de calculs : « le battement d'ailes d'un paramètre faisceau peut produire un ouragan dans le fichier de modélisation »

Construction de la casemate terminée

Avancement du projet ThomX

Début de la mise en place des éléments machine : LINAC, ligne de transfert, ligne d'extraction.

Premier faisceau: 2018

Validation des résultats de calculs par mesures (2018-2019) et mise à jour le cas échéant

- Unité d'expertise en radioprotection, sûreté, déchets radioactifs, démantèlement d'installations nucléaires
- Références:
 - Synchrotron SOLEIL: Evaluation financière des coûts de démantèlement – Evaluation de l'activation des bêtons par FLUKA
 - CERN : Revue de la gestion des déchets radioactifs
 - PHIL LAL (accélérateur d'électrons) : Validation des blindages radiologiques existant pour une prochaine montée en puissance
 - Cilex Apollon (Laser haute puissance (10 PW) avec interaction sur cible gazeuse et solide): Revue du PSS – Dossier d'autorisation ASN
- www.irsd.cnrs.fr/

Bibliographie

- Bölhen, T. T., Cerutti, F., Chin, M. P., Fasso, A., Ferrari, A., Ortega, P. G., . . . Vlachoudis, V. (2014, June). The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets, 120, pp. 211-214.
- Fasso, A., Sala, P. R., & Ferrari, A. (s.d.). Designing electron accelerator shielding with FLUKA
- Fasso, A., Silari, M., & Ulrici, L. (1999). Predicting induced radioactivity at high-energy electron accelerators. Ninth International Conference on radiation shielding. Tsukuba: CERN.
- Ferrari, A., Sala, P. R., Fasso, A., & Ranft, J. (2011). FLUKA: a multi-particle transport code. Genève:
- Horodynski, J.-M. (2015). Conception et optimisation des blindages radiologiques d'une source compacte de rayons X ThomX. Paris: CNAM.
- Horodynski, J.-M., & Wurth, S. (2016). Shielding Design and Radioprotection for Andromede and ThomX accelerators. EPJ Web of conferences - ICRS13-RPSD2016. Paris: EPJ.
- Swanson, W. P. (1979). Radiological safety aspects of the operation of electron linear accelerator (Vol. Technical Report Series n°188). Vienna: IAEA.
- Theis, C., Buchegger, K. H., Brugger, M., Forkel-Wirth, D., Roesler, S., & Vincke, H. (2006). Interactive three dimensional visualization and creation of geometries for Monte Carlo simulations. Nuclear instruments and methods in physics research, 562, pp. 827-829.
- Variola, A., Haissinski, J., Loulergue, A., & Zomer, F. (2013). ThomX: Technical design report. Orsay: LAL.
- Vlachoudis, V. (2009). FLAIR: a powerful but user friendly graphical interface for FLUKA. Proceedings of international conference on mathematics, computationnal methods and reactor physics. Saratoga Springs.