

Yurdunaz Çelik

Alexey Stankovskiy

Edouard Malambu Gert Van den Eynde

> astankov@sckcen.be myrrha@sckcen.be

Copyright © 2018 SCK•CEN

EFFICACITE DE DIVERSES TECHNIQUES DE REDUCTION DE VARIANCE DANS LA RESOLUTION DE PROBLEMES DE DIFFUSION EN PROFONDEUR DES NEUTRONS

Outline

• Le projet MYRRHA

- Accélérateur 5.9 MeV à l'Université catholique de Louvain
- Techniques de réduction de variance dans les problèmes de blindage
- Blindage de la voûte
- Blindage du casemate
- Conclusion et perspectives

MYRRHA

Construction de la système pilotée par accélérateur (ADS)

600 MeV – 2.5 mA a 4.0 mA accélérateur linéaire de protons

- Cible de spallation / source
- Réacteur refroidi par métal liquide (alliage eutectique plomb bismuth) et capable de fonctionner de manière versatile tant en mode critique qu'en mode souscritique

Accélérateur					
<i>particules</i> protons		protons			
	Energie	600 MeV			
	courant	2.4 à 4 mA			
NY LINE DUBLED INJECTOR IN INFORMATION INF					
F					
		k _{eff}			
		spect			
	calop				

MYRRHA: portefeuille d'applications

La stratégie de mise en œuvre progressive

Plan de mise en œuvre progressive (2016-2030)

Budget d'investissement total

Ligne de faisceau au Centre des Ressources du Cyclotron à Université Catholique de Louvain

IS - ion source

LEBT – low energy beam transport, jusqu'à 30 keV

RFQ - radio frequency quadrupole, jusqu'à 1.5 MeV

MEBT - medium energy beam transport and

CH - cross-bar H-type cavities, jusqu'à 5.9 MeV

Composition de la ligne de faisceau au Centre des Ressources du Cyclotron à Université Catholique de Louvain

Composition de la ligne de faisceau au Centre des Ressources du Cyclotron à Université Catholique de Louvain

Paramètres de faisceau

Perte de faisceau opération normale

	Energie, MeV	Perte Watt/m	proton/seconde/m	
RFQ	1.5	100	4.16E+14	
СН	5.9	10	1.06E+13	
TB = banc d'essai	5.9	10	1.06E+13	
	Energie, MeV	Courant, mA	proton/seconde	
BD arrêt faisceau principal	5.9	10	6.24E+16	

• Perte de faisceau totale

	Energie, MeV	Courant, mA	proton/seconde
TB = banc d'essai	5.9	10	6.24E+16

Limite de débit de dose:

✓ 5 µSv/h pour zone contrôlée et 0.1 µSv/h pour zone publique

Méthodes de réduction de variance: MCNPX

Il existe 14 méthodes différentes, les plus utiles sont:

Generateur de "weight windows" (WWG)

- Simulation de type énergie continue
- Particules sources: primaires (=protons)
- limité à 15 intervalles d'énergie pour les fonctions d'importance dans l'espace.

- calcul multi-groupe seulement
- Seulement **secondaires** (neutrons et photons)
- est également limité au nombre de groupes, mais > 15 (nombre de groupes dans la bibliothèque multi-groupe).

La fonction d'importance adjointe peut être utilisée pour les calculs ultérieurs (forward et adjoint).

DXTRAN – méthode partiellement déterministe

- la technique de collision forcée: forcer une collision dans une section particulière du parcours d'une particule
- l'utilisateur pousse les particules vers des régions importantes du problème

Méthodes de réduction de variance: ADVANTG

ADVANTG (ORNL-2015)

Un outil automatisé pour générer des paramètres de réduction de variance pour des simulations de Monte Carlo à énergie continue et à source fixe avec MCNP5: solution approximative de transport adjoint par la méthode d'ordonnées discrètes multi-groupes 3-D dans le code déterministe **Denovo**.

ADVANTG peut être utilisé uniquement pour des simulations de neutrons, de photons et de neutrons-photons couplés. Par conséquent, il est principalement utilisé pour les réacteurs et les problèmes de blindage neutronique

Pour utiliser ADVANTG dans les problèmes de blindage des accélérateurs **de protons**, il faut d'abord générer une **source de neutrons** à partir des interactions des protons avec les matériaux des composants de l'accélérateur.

Les paramètres de « weight windows » obtenus avec ADVANTG sont utilisés dans les calculs ultérieurs MCNPX avec des neutrons comme source.

Blindage de la voûte

Doses (µSv / h) dans les détecteurs en cas de fenêtres de l'arrêt faisceau principal complètement ouvertes. Les résultats ont été obtenus avec « weight windows »

	СН		ТВ		BD	
	neutron	gamma	neutron	gamma	neutron	gamma
détecteur 1	1.98E+01	8.57E-02	4.59E+00	9.69E-03	5.22E+03	9.34E+02
détecteur 2	7.15E-02	2.37E-03	3.91E-03	9.48E-05	6.37E+01	4.73E+00

Blindage de la voûte

- Pour le détecteur derrière la porte blindée, une bonne précision du calcul de débit de dose ne peut pas être obtenu par une simulation analogique (simulation directe, physique réelle) dans des laps de temps raisonnables.
- Par conséquent, on doit recourir à des méthodes de réduction de variance pour réduire le temps de calcul et obtenir les résultats valides.

Débit de dose (µSv / h) dans le détecteur derrière la porte blindée, calculé avec WWG

Materiaux de la porte	Particule	μSv/h		
A_{cier} (5 cm)+PE (20 cm)+ A_{cier} (5 cm)	neutron	0.06	±	0.02
	photon	0.06	±	0.03

Comparaison des méthodes de réduction de la variance devant la porte blindée

Débit de dose de neutrons obtenu dans les détecteurs à l'entrée du casemate

Comparaison des méthodes de réduction de la variance derrière la porte blindée

Méthodes	Source	Débit de dose [µSV/h]	Err	NPS	FOM	Temps de calcul [h]
ANALOG	proton	-	-	1E+09	-	18
WWG	proton	0.05	15%	5E+08	1.00E-03	10
DXTRAN	neutron	0.04	31%	5E+08	1.10E-03	25
Mode ADJOINT	neutron	0.03	90%	4E+10	2.40E-02	25
ADVANTG	neutron	0.06	4%	2E+08	1.70E-03	16

ADVANTG est le plus efficace (4% d'erreur relative)

Bouclier du casemate: l'arrêt faisceau principal

source de neutrons: forme sphérique

source de protons: forme de cône

→ zone où les doses sont calculées

Bouclier du casemate: banc d'essai

Conclusions

- Le code ADVANTG est très efficace pour obtenir rapidement des résultats avec une erreur statistique très faible dans les problèmes de blindage neutronique.
- La seule difficulté rencontrée avec le code ADVANTG appliqué aux problèmes de blindage des accélérateurs est une définition représentative de la distribution des neutrons à partir des interactions des protons primaires..
- L'énergie maximale des neutrons dans la bibliothèque multi-groupes ADVANTG est de 20 MeV - le modèle de l'injecteur 5.9 MeV s'adapte bien
- L'extension de l'énergie à 600 MeV (MYRRHA linac) nécessite l'extension de la bibliothèque ADVANTG par ex. en utilisant la bibliothèque HILO2k. La bibliothèque est obsolète mais la qualité des fenêtres de pondération peut être acceptable - les tests sont en cours.

Copyright © 2018 - SCK•CEN

PLEASE NOTE!

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK•CEN. If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK•CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire Belgian Nuclear Research Centre

> Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS Operational Office: Boeretang 200 – BE-2400 MOL

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE