IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Journées Codes de calcul en radioprotection, radiophysique et dosimétrie

Développement d'un modèle dosimétrique multicellulaire basé sur MCNP6 et Python: application à l'étude du radiomarquage de cellules pour l'imagerie TEP

<u>Manon Jacquemin¹</u>, David Broggio¹, Didier Franck¹ et Aurélie Desbrée¹ ¹Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France

Contexte

Suivi in vivo de cellules marquées par imagerie TEP

- > Suivi de lymphocytes pour la recherche de foyer infectieux, utilisé en clinique
- Suivi de cellules souches mésenchymateuses pour évaluer l'efficacité d'une thérapie cellulaire

Tomographie par émission de positons (TEP)

→ Emetteur B+

Contexte

Suivi in vivo de cellules marquées par imagerie TEP

- > Suivi de lymphocytes pour la recherche de foyer infectieux, utilisé en clinique
- Suivi de cellules souches mésenchymateuses pour évaluer l'efficacité d'une thérapie cellulaire

1 - Marquage cellulaire in vitro

2 - Injection des cellules marquées dans l'organisme et acquisition des images

Contexte

Suivi in vivo de cellules marquées par imagerie TEP

- Suivi de lymphocytes pour la recherche de foyer infectieux, utilisé en clinique
- Suivi de cellules souches mésenchymateuses pour évaluer l'efficacité d'une thérapie cellulaire

- 1 Marquage cellulaire in vitro
- 2 Injection des cellules marquées dans l'organisme et acquisition des images
- Les cellules sont particulièrement exposées à la radioactivité durant la phase de marquage *in vitro*
- Émetteur beta

Quel impact sur les cellules ?

Impact du radiomarquage sur les cellules

Cytotoxité

altérations de fonctionnalités, perte de viabilité

Dégradation de l'image

Risques pour le patient ?

Développement d'un modèle dosimétrique à l'échelle multicellulaire à l'aide de simulations Monte Carlo (MCNP6) et Python

2 Application du modèle à l'étude de 3 radionucléides utilisés en imagerie TEP pour le suivi de cellules radiomarquées

Principe de la dosimétrie interne en médecine nucléaire

Formalisme du MIRD

- Cible: Noyau (site radiosensible)
- Source: N, Cy ou Sc

Dosimétrie multi-cellulaire: configuration géométrique

Modèle simple: Réseau

> Monocouche 2D, ou amas 3D compact

Hexagonal compact

[Cai et. al (2010)., Faraggi et. al (1998), Goddu et al (1993).]

Cubique simple compact [Cai et. al (2010)., Howell et al. (2014).]

Dosimétrie multi-cellulaire: configuration géométrique

Réseau cubique à compacité variable

 $C\propto rac{1}{e^3}$

IRS

6/15

Dosimétrie multi-cellulaire: grandeurs & définitions

$$D_{cell} = D_{self} + D_{cross} + D_{milieu}$$

Dosimétrie multi-cellulaire: calcul de la cross-dose

Calcul de D-cross à partir de multiples S-cross (MCNP6+Python) [Makrigiorgos et al. (1989)., Faraggi et al. (1998)., Howell et al. (2014)., Marcatili et al. (2016).]

Méthodologie

Acquisition de données avec MCNP6

Courtes/moyennes distances:
 Calcul direct sur MC

Problème: convergence très lente à partir d'une certaine distance (réduction de l'angle solide)

Grandes distances:

> Calcul indirect à partir de DPKs
 [Marcatili et al.]

Manon Jacquemin / IRSN / SDOS / LEDI

9/15

Application: dosimétrie de 3 radionucléides émetteurs B+

(i) s-cross mean en fonction du volume du cluster

(ii) D-mean en fonction de la compacité

$$D_{mean} = D_{cross\,mean} + D_{self}$$

> Forte influence de la compacité sur la dose moyenne à la cellule

IRSN

12/15

* Marquage de lymphocytes (R_c =5 µm)

- > Densité cellulaire = 10×10^6 cellules/mL \leftrightarrow c = 5,6E 3
- > Activité volumique = 100 MBq/mL
- > Temps incubation: 1h

Cellules suspendues dans un volume d'activité

	С	u-64	F	-18	Ga	a-68
% de l'activité tot dans les cellules	Dcell (Gy)	Dcell/Dconv	Dcell (Gy)	Dcell/Dconv	Dcell (Gy)	Dcell/Dconv
10	11,5	1,89	12,1	1,15	26,6	1,05
20	17,3	2,85	13,7	1,29	28,0	1,10
30	23,0	3,81	15,3	1,43	29,3	1,15
50	34,6	5,72	18,4	1,72	32,1	1,26
60	40,4	6,68	20,0	1,87	33,5	1,32
80	52.0	8,59	23.1	2,15	36,3	1,43

$D_{cel} = D_{cross\,mean} + D_{self} + D_{milieu}$

* Marquage de lymphocytes (R_c =5 µm)

- > Densité cellulaire = 10×10^{6} cellules/mL \leftrightarrow c = 5,6E 3
- > Activité volumique = 100 MBq/mL
- > Temps incubation: 1h

Cellules suspendues dans un volume d'activité

	Cu	I-64	F-1	18	Ga	-68
% de l'activité tot dans les cellules	Dcell (Gy)	Dcell/Dconv	Dcell (Gy)	Dcell/Dconv	Dcell (Gy)	Dcell/Dconv
10	11,5	1,89	12,1	1,15	26,6	1,05
20	17,3	2,85	13,7	1,29	28,0	1,10
30	23,0	3,81	15,3	1,43	29,3	1,15
50	34,6	5,72	18,4	1,72	32,1	1,26
60	40,4	6,68	20,0	1,87	33,5	1,32
80	52,0	8,59	23,1	2,15	36,3	1,43

 $D_{cel} = D_{cross\,mean} + D_{self} + D_{milieu}$

* Marquage de lymphocytes (R_c =5 µm)

- > Densité cellulaire = 10×10^6 cellules/mL \leftrightarrow c = 5,6E 3
- > Activité volumique = 100 MBq/mL
- > Temps incubation: 1h

Cellules suspendues dans un volume d'activité

	Cu	I-64	F-1	18	Ga	1-68
% de l'activité tot dans les cellules	Dcell (Gy)	Dcell/Dconv	Dcell (Gy)	Dcell/Dconv	Dcell (Gy)	Dcell/Dconv
10	11,5	1,89	12,1	1,15	26,6	1,05
20	17,3	2,85	13,7	1,29	28,0	1,10
30	23,0	3,81	15,3	1,43	29,3	1,15
50	34,6	5,72	18,4	1,72	32,1	1,26
60	40,4	6,68	20,0	1,87	33,5	1,32
80	52,0	8,59	23,1	2,15	36,3	1,43

$$D_{cel} = D_{cross\,mean} + D_{self} + D_{milieu}$$

* Marquage de lymphocytes (R_c =5 µm)

- > Densité cellulaire = 10×10^6 cellules/mL \leftrightarrow c = 5,6E 3
- > Activité volumique = 100 MBq/mL
- > Temps incubation: 1h

Cellules suspendues dans un volume d'activité

	Cu	I-64	F-1	18	Ga	1-68
% de l'activité tot dans les cellules	Dcell (Gy)	Dcell/Dconv	Dcell (Gy)	Dcell/Dconv	Dcell (Gy)	Dcell/Dconv
10	11,5	1,89	12,1	1,15	26,6	1,05
20	17,3	2,85	13,7	1,29	28,0	1,10
30	23,0	3,81	15,3	1,43	29,3	1,15
50	34,6	5,72	18,4	1,72	32,1	1,26
60	40,4	6,68	20,0	1,87	33,5	1,32
80	52,0	8,59	23,1	2,15	36,3	1,43

$$D_{cel} = D_{cross\,mean} + D_{self} + D_{milieu}$$

Conclusions

- Développement d'un modèle dosimétrique multi-cellulaire à l'aide de MCNP6 et Python
 - > Calcul de dose précis à l'échelon cellulaire
 - > Adaptable à tout type de distribution cellulaire
 - > Prise en compte possible de l'hétérogénéité de l'activité incorporée dans les cellules

Application à l'étude de 3 radionucléides utilisés en imagerie TEP

- > Influence de la compacité sur la dose moyenne à la cellule
- > Comparaison de la dose à la cellule avec la dose conventionnelle

Perspectives

- Amélioration du modèle
 - > hétérogénéité de l'activité, rayons cellulaires variables, distributions aléatoires, ...
- Optimisation du code pour réduire les temps de calcul

Merci pour votre attention

Méthodologie 1:

$$D_{cross} = \tilde{A}_{cell} \times S_{cross}$$

MCNP

géométrie

définition d'un réseau cubique de cellule (lat=1)

Source et tally

*Définition du spectre du radionucléide considéré. *Source et tally *f8 (MeV/nps) associée à chaque cellule du réseau Calcul du facteur S-cross-mean avec MCNP [Cai et al.]

> Approche source/cible inversée

Méthodologie 1:

$$D_{cross} = \tilde{A}_{cell} \times S_{cross}$$

MCNP6

géométrie

définition d'un réseau cubique de cellule (lat=1)

Source et tally

*Définition du spectre du radionucléide considéré. *Source et tally *f8 (MeV/nps) associée à chaque cellule du réseau

Méthodologie 1:

$$D_{cross} = \tilde{A}_{cell} \times S_{cross}$$

MCNP

géométrie

définition d'un réseau cubique de cellule (lat=1)

Source et tally

*Définition du spectre du radionucléide considéré. *Source et tally *f8 (MeV/nps) associée à chaque cellule du réseau

Conclusion

> Avantage

Adapté à une configuration cellulaire en réseau (utilisation du mode *lat*)

> Limites

- Pas adapté aux grands volumes:
 - Requiert l'envoi d'un nombre de particules trop important pour les grands volumes
 - erreur MCNP liée à l'allocation de mémoire (segmentation fault) à partir d'un nombre trop important de sources
- Limité à une répartition de l'activité homogène entre les cellules

(i) S-cross mean en fonction du volume du cluster

	S-cross m	⁰ /diff rol	
Volume (cm3)	MCNP6+python	MCNP6	ann ret.
9,82785E-06	0,0025	0,0023	8,0
3,16144E-05	0,0037	0,0033	10,3
7,31395E-05	0,0048	0,0043	11,3
0,00014077	0,0058	0,0052	11,0
0,000240874	0,0067	0,0060	10,9

Marquages à l'In-111

Table 1 Differences among labeling efficiencies may be attributed to differences in the cell type (human or animal and also the histologic type), radioactive dose, radiopharmaceutical, or incubation time

	Cell type	Radiopharmaceutical	Incubation period (min)	Labeling dose (MBq)/10 ⁶ s	Labeling efficiency (%)
Bindslev et al. [16]	Human MSCs	¹¹¹ In-tropolone	10	30	25
Nowak et al. [17]	Human HPCs	¹¹¹ In-oxine	30	0.1, 1	75 ± 14
Rini et al. [18]	Human leukocytes	¹¹¹ In-oxine	60	3.5-5	90±5
Botti <i>et al.</i> [35]	Human lymphocytes	¹¹¹ In-oxine	45	0.2	68
Jin et al. [20]	Canine MSCs	¹¹¹ In-tropolone	30	<0.9	80
Aicher et al. [21]	Human EPCs	¹¹¹ In-oxine	60	15	67 ± 13
Zhou <i>et al.</i> [22]	Rat embryonic cardiomyoblast	¹¹¹ In-oxine	30	3.7-4.9	85
Caveliers et al. [37]	Human CD133+	¹¹¹ In-oxine	45-60	0.9	51.2

EPCs, endothelial progenitor cells; HPCs, hematopoietic progenitor cells; ¹¹¹In, ¹¹¹Indium; MSCs, mesenchymal stem cells.

 Table 2. Effects of ¹¹¹In-oxine activity per cell on OC/TR-retargeted activated lymphocytes

	Activity per cell		
	High	Low	
No. of cases	7	3	
Mean activity (MBq/1×10 ⁸ cells) (range)	26 (22–30)	0.7 (0.5–0.8)	
Labelling efficiency (%) (range)	68 (560–75)	36 (25–45)	
Viability at 4 h (%)	90	95	
Proliferative ability at 8 days (% relative to controls)	4	84	

[Botti et al.]

Contribution relative des types de particules émises

$$\rightarrow$$
 S-self

$$R_n = 4 \ \mu m$$

Cu-64

Radiation	Contribution au S-self(%)				
	(N←N) (I	N←Cy)	(N←Cs)		
Photons	0,49	0,78	1,52		
Electrons auger et IC	<u>76,73</u>	51,77	11,33		
B+/B-	22,78	47,46	87,15		

F-18

Radiation	Contribution au S-self(%)				
	(N←N) (N ←	–Cy) (N∢	–Cs)		
Photons	1,07	0,90	1,05		
B+/B-	98,93	99,10	98,95		

Ga-68

Radiation	Contribution au S-self(%)				
	(N←N)	(N←Cy)	(N←Cs)		
Photons	1,53	3,0	7 1,35		
Electrons auger et IC	40,85	5 21,5	6 <u>6,18</u>		
B+/B-	58,25	5 77,3	7 92,47		

\rightarrow	$S - cross_{ma}$	$R_n = 4 \ \mu m$
Cu-	64	$R_c = 5 \mu m$

	Radiation	Contribution au S-cross(%)				
		(N←N)	(N←Cy)	(N←Cs)		
→	Photons	2,62	2,65	2,62		
→	Electrons auger et IC	4,69E-04	4,46E-04	4,86E-04		
→	B+/B-	97,4	97,3	97,4		

F-18

Radiation	Contril	Contribution au S-cross(%)				
	(N←N)	(N←Cy)	(N←Cs)			
Photons	2,17	2,17	2,15			
→ <u>B+/B-</u>	97,8	97,8	97,9			

Ga-68

	Radiation	Contribution au S-cross(%)			
		(N←N)	(N←Cy)	(N←Cs)	
→	Photons	1,80	1,80	1,80	
→	Electrons auger et IC	1,11E-03	1,09E-03	1,22E-03	
→	B+/B-	98,2	98,2	98,2	

Validation calcul s-cross mean

		Mean cross S (Gy/Bq/s)	%rel err.	%rel err.
a/2= 0,025 cm	MCNP6 (M1)	0,00517	33,7601407	2,4
R= 0,025 cm	MCNP5 (Cai et al.)	0,005048	-	ref
	MIRDCell	0,00385	ref	-

	Cu-64		F-18		Ga-68	
compacité	Dcell/Dconv	cross-dose(%)	Dcell/Dconv	cross-dose(%)	Dcell/Dconv	cross-dose(%)
0,004	14,10	6,86	2,99	35,83	1,68	62,8
0,008	7,88	12,79	2,10	52,35	1,41	76,98
0,012	5,53	17,95	1,74	62,01	1,31	83,38
0,020	3,83	25,87	1,49	72,27	1,22	88,8
0,034	2,69	38,23	1,36	82,18	1,16	93,21
0,155	1,38	74,05	1,15	95,48	1,09	98,45
0,524	1,13	90,58	1,11	98,62	1,08	99,53