Modélisation de la radioactivité et de la relaxation atomique dans GEANT4

Laurent Desorgher pour la collaboration GEANT4

Plan

- Approche de la modélisation de la radioactivité et la relaxation atomique dans GEANT4 et base de données
- Exemples et comparaison avec spectre de référence
- Simulations en mode biaisé

Approche GEANT4 - Modélisation étape par étape de tous les processus physiques impliqués dans la désintégration radioactive

^A_NX Noyau radioactif mère

Désintégration radioactive

 β^{-} , β^{+} , α , capture électron , neutron, proton

 $A'_{N'}\chi^*$ Noyau excité fille

Cascade de désexcitation nucléaire émission gamma et électron atomique

 $A'_{N'}X$ Noyau fille avec électrons atomiques excités

Cascade de relaxation atomique émission rayons X et d'électron Auger

Noyau fille avec atome relaxé

Temps de désintégration pris en compte

Exemple tracking désintégration ⁶⁰Co

* G4Track Information: Particle = Co60, Track ID = 1, Parent ID = 0 KineE dEStep Y Step# Х Ζ Process 0 fm 0 <u>fm</u> 0 meV 0 meV initStep 0 fm 0 0 fm 0 fm 0 fm 0 meV 0 meV RadioactiveDecay * G4Track Information: Particle = e^- , Track ID = 4, Parent ID = 1 73 keV 0 fm 0 fm 0 fm 0 meV initStep * G4Track Information: Particle = anti_nu_e, Track ID = 3, Parent ID = 1 0 fm 244 keV 0 meV initStep 0 fm 0 fm * G4Track Information: Particle = Ni60[2505.753], Track ID = 2, Parent ID = 1 0 meV 2 -8.95e+03 fm 4.36e+04 fm -9.03e+04 fm RadioactiveDecay * G4Track Information: Particle = gamma, Track ID = 6, Parent ID = 2 0 -8.95e+03 fm 4.36e+04 <u>fm</u> -9.03e+04 <u>fm</u> 1.17 MeV 0 meV initStep * G4Track Information: Particle = Ni60[1332.514], Track ID = 5, Parent ID = 2 1 -1.53 nm -1.05 Ang -3.28 Ang 0 meV 12.3 eV RadioactiveDecay * G4Track Information: Particle = gamma, Track ID = 8, Parent ID = 5 0 -1.53 <u>nm</u> -1.05 <u>Ana</u> -3.28 <u>Ana</u> 1.33 MeV 0 meV initStep * G4Track Information: Particle = Ni60, Track ID = 7, Parent ID = 5 0 -1.53 nm -1.05 Ang -3.28 Ang 15.9 eV 0 meV initStep

Désintégration radioactive dans Geant4

Canaux de désintégration pris en compte

α, β⁻, β⁺, capture électronique (couche K, L, M, N)
émission neutron et proton
émission neutron et proton avec désintégration β⁻ retardé

Caractéristiques des désintégrations lues dans une base de donnée basée sur les données ENSDF et nuclear wallet card, (1500-2000 isotopes traités)

Désexcitation nucléaire dans Geant4

Désexcitation des noyaux excités après une désintégration radioactive ou une interaction

émission gamma ou e- atomique désintégration radioactive pour les états excités à longue vie

Temps d'émission pris en compte afin de pouvoir simuler les coincidences

Caractéristiques des désintégrations lues dans une base de donnée basée sur les données ENSDF (1500-2000 isotopes traités) et le code BRICC

Definition des états excités : t^{1/2}, énergie, J^{π}

Définition des transitions : énergie, intensité gamma, proportion e- de conversion, multipolarité

Relaxation du cortège d'électrons atomiques

Relaxation atomique après une conversion interne, une capture électronique, une ionisation ou une intéraction photo-électrique

émission instantané de rayons X et e⁻ Auger

Utilisation de la base de donnée « Evaluated Atomic Data Livermore » EADL

énergie et probabilité d'émission pour tous les types possibles de transition

Exemple de désintégration ¹³¹/

Exemple de désintégration ¹³¹ spectre électrons

Exemple de désintégration ²¹⁴Bi

Vaude Vaude

Validation avec données DDEP exemple ⁵⁵Fe

Simulation capture électronique couche K,M,N suivi par relaxation atomique

Validation avec données DDEP exemple ⁵⁵Fe

Modification des bases de donnée de relaxation atomique GEANT4 en incluant les données de référence DDEP pour la productions des rayons X

Rayons X	Intensité (%)		
	DDEP	G4 sans correction	G4 avec correction DDEP
Κα1	16.57	15.91	16.54
Κα2	8.44	8.15	8.47
Κβ	3.4	2.5	3.3

Désintégration en mode biaisé dans GEANT4

Activation du béton par des électrons de 45 MeV

- Possibilité de forcer la désintégration radioactive des isotopes dans une fenêtre de temps
- Intégration des équations de Bateman dans GEANT4

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$
$$\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$$

 Calcul d'activité d'une source radioactive à un temps donné

Vaud

Calcul d'activité après activation

Activité ⁹⁹Mo et filles

Conclusions

- GEANT4 permet de modéliser tous les processus physiques impliqués dans une désintégration radioactive
- Processus décrits par des bases de données modifiables par l'utilisateur
- Bonne comparaison avec des spectres de référence
- Validation en cours des spectres rayons X et e- Auger avec DDEP
- Possibilité d'utiliser le mode biaisé

