Journée de la Société Française de Radioprotection Paris, 26 septembre 2017

Nanoparticules fluorescentes pour l'étude du trafic membranaire et du transport intracellulaire dans les neurones.

François TREUSSART

ENS Paris-Saclay, Laboratoire Aimé Cotton, Université Paris-Saclay

Biomedical context

Neuropsychiatric Disorders Schizophrenia / Autism

Healthy Severe Brain Alzheimer's

Neurodegenerative Diseases Parkinson / Alzheimer 1% World-wide frequency Multiple risk factors
More than 100 genes

≠ Rare Brain Diseases (0.001% frequency & 1 impacted gene)

Need for

- Unbiased diagnosis
- Efficient treatments

Dissect the underlying neurobiological process

No sample/biopsy of human brain (like for cancer) ⇒ Neurogenomic Data from Genome Sequencing

Polygenic Architecture of Common Brain Diseases

Genetic Risk Factors (change in gene expression or function)

Measuring sub-neuronal functions

Traffic of synaptic receptors

Some fluorescent nanoparticles

Quantum dots (QD)

Fluorescent nanodiamonds (FND)

Arroyo, S. et al. ACS Nano, 2013

Perfectly photostable

Faklaris et al. Diam & Rel. Materials, 2010

0.1 nm

Live cell wide field fluorescence microscopy

Measuring synaptic molecule trafficking

Single QD-receptor tracking

Neuromethods 110 (2016)

Localization with a precision ≈10 nm

9 s

24 s

20 25

QDs trajectories

Limitations and prospects

Intraneuronal transport measurement

Labeling endosomal cargo with a single fluorescent nanoparticle spontaneously internalized

Measuring intraneuronal transport

Intraneuronal transport measurement

Probing axonal retrograde transport by single QD tracking

Mudrakola, H. V., et al. *Structure* **17**, 1433 (2009).

10 frames/s

NGF: Nerve Growth Factor

QD blinking (1 QD per endosome) \Rightarrow not precise tracking

Quantum Dots vs FNDs for tracking

Nanodiamonds to track intra-dendritic transport

Hypocampal neurons + 30 nm sized FNDs

white light illumination (contrast) + laser (561 nm) illumination

real time (20 frame/s)

Haziza et al., *Nat. Nanotechnol.* **12**, 322 (2017)

mostly **unidirectional** motion with average speed ≈1.5 µm/s

Kymograph

GO & STOP motion

→ parameters: velocity (slope), pausing duration δt , run length δL

Trajectories extraction

Tracking software: Icy (Pasteur Institute, Paris, France). Probabilistic tracking (wavelet analysis): **fast** and **robust**

STOP (pausing) when frame-to-frame displacement <30 nm

- \Rightarrow Transport readouts
 - velocity (in GO phase),
 - Processivity (duration between 2 stops)
 - run length (between 2 stops)
 - Pausing duration
 - pausing frequency

Transport monitored is Microtubule dependent

Application: functional impact of genetic risk factor

MARK1

Kinase of Microtubule Associated Proteins (MAP) —> phosphorylates the MAP (pMAP)

in brain of **Autism** patient (post-mortem)

Maussion et al, Hum. Mol. Genet. 17, 2541 (2008)

Subtle change in gene expression in brain of patients

Transgenic mouse to model Human Brain diseases

Mark1 mouse

Common Variant MARK1 / 1st order subtle perturbation

« Mechanistic » interpretation

MAP = a roadblock of microtubule based transport

Prospects: probing neuronal network

Functional investigation of a neuronal network (brain slice)

(intact inter-neuron connections)

Complementary parameters

- calcium flux & membrane voltage sensing
- intraneuronal transport with FNDs (deep, 3D)

Two-photon excitation microscopy

✓ Genetically encoded fluorescent probe (Ca²⁺, V)

but NV has a low 2-photons absorption cross-section...

1,000

Wavelength (nm)

1.400

A. M. Smith et al. *Nat. Nanotechnol.* **4**, 710 (2009) 200

600

1,800

Background free imaging: alternative nano labels

nano-KTP (KTiOPO₄) \Rightarrow Second Harmonic Generation (w+w \rightarrow 2w) [SHG] non linear labels λ_{exc} =800-1300 nm / λ_{det} = 400-650 nm

Pulsed infrared laser excitation (raster scan) 2-photon fluo SHG

TRITC labeled neurons

L. Mayer et al., Nanoscale 5, 8466 (2013)

Toward a multimodal (fluo-SHG) nanoprobe: nano-SiC

NIR Fluorescence: embedded vacancy related defects V_{si} ($\lambda_{em}^{max} \approx 900 \text{ nm}$)and possibly ($V_c V_{si}$)⁰ ($\lambda_{em}^{max} \approx 1150 \text{ nm}$) and $N_c V_{si}$ ($\lambda_{em} \approx 1250 \text{ nm}$?)

- Single particle tracking provide access to fast molecular dynamics in neurons
- QD are bright emitters but suffer from blinking
- FND stable emission allows a precise quantification of intraneuronal transport, revealing subtle genetic changes
- In thicker tissue (brain slices), alternative nanolabels compatible with NIR excitation are necessary:
 - SHG or/and fluorescence of nano-SiC
 - > NIR emitting QD
 - > Carbon nanotubes ($\lambda_{em} \approx 1000 \text{ nm}$)
 - ▶ ...

Acknowledgements

ENS Paris Saclay & INSERM U894

- Simon HAZIZA (now postdoc at Stanford)
- Marie-Pierre ADAM
- Nitin MOHAN
- Sophie MASSOU
- Xuan Loc LE

 Rachel DAUDIN • Aude-Marie LEPAGNOL-BESTEL • Yan LOE-MIE Michel SIMONNEAU

Academia Sinica (Taiwan)

- Feng-Jen HSIEH
- Huan-Cheng CHANG

Thanks for your attention

A perfectly photostable label: Fluo. Nanodiamond

fNDs-labelled cargoes are not Lysosomes

Hillaireau, H. Couvreur, P. Cell. Mol. Life Sci. 2009.

29

30

Colocalization of fNDs with endosomal compartments

Endosomal markers: EEA1, Rab5, Rab7, Rab11 + Trans Golgi Network protein (TGN38)

dualview

Pharmacological model of Alzheimer disease

Beta amyloïd peptide AB42 PLAQUE Fibrils Alzheimer cells Oligomers healthy cells Univ. Colorado Colorado Springs 200kDa 97 **Cell Membrane** 66 large oligomers 45 **Beta-amyloid Peptide** and aggregates APP 30 Purification Inside Cell 20 B. Allinguant tetramer 14 (INSERM) - trimer Beta-secretase 6 monomer **Cell Surface** Gamma-secretase

National Inst. on Aging, NIH

Impact of A_{β} on intraneuronal transport

32

First try of nano-SiC tracking in brain of a living mouse

2. SHG imaging (λ_{exc} =1000 nm)

Collaboration: Brice BATHELLIER, Neuro Paris-Saclay Institute

SHG imaging at 40 µm depth (bandpass filter: 515±25 nm)

 \Rightarrow nano-SiC detectable