

Etat-Major de la Marine Bureau Maîtrise des Risques

Le système de surveillance nucléaire de la marine de nouvelle génération

L.Tenailleau – F. Pignard

Rôles et missions du 2SNM NG

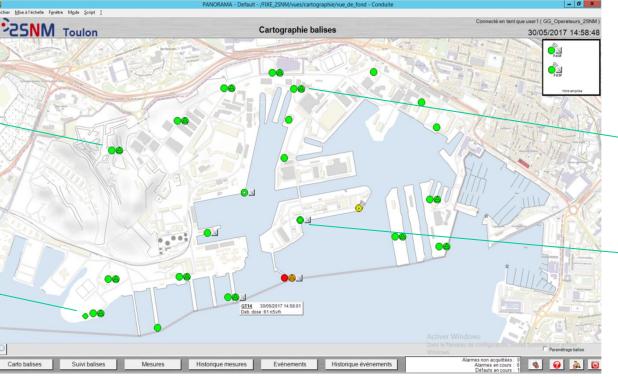
En fonctionnement courant (hors accident) : Surveillance de l'environnement

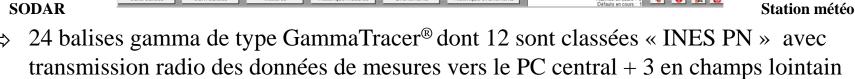
- where en continu le débit de dose gamma ambiant
- where en continu l'activité volumique des gaz et des aérosols
- 🤝 préparer les fichiers pour la transmission des mesures vers le RNM
- where les directions et vitesses du vent et la turbulence atmosphérique

En situation accidentelle : Suivre et prévoir les rejets

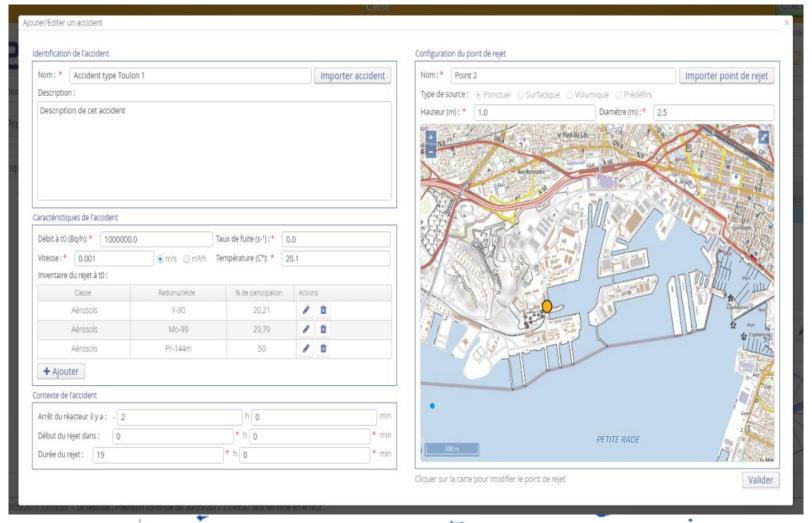
- b localiser et évaluer le terme source des rejets au moyen des résultats de mesures gamma et des données météo
- simuler en temps semi-réel la dispersion atmosphérique et les dépôts
- signification à ajuster le terme source de rejet par assimilation des résultats de mesure gamma ambiant
- 🖔 calculer les doses et débits de doses équivalentes et efficaces
- \$\text{\$\text{\$\general}}\$ générer les fichiers pour la transmission des mesures vers CRITER
- \$\times\$ faire des projections de la dispersion du panache et des doses associées

2SNM NG – Le réseau de surveillance



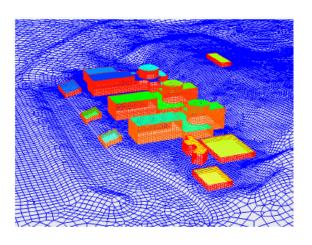

Balise aérosols/gaz

Balise gamma



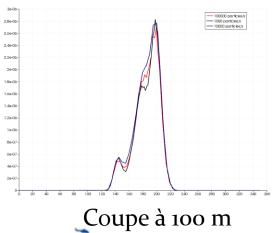
- 12 balises PGM200 [®] de mesure de l'activité volumique des gaz et des aérosols
- 2 balises météorologiques et 1 sodar

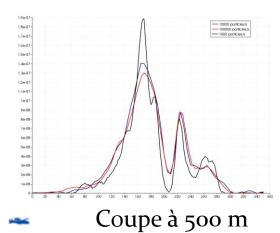
2SNM NG – Mode accident

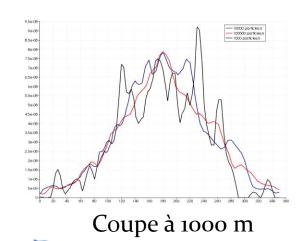


Modèle de dispersion atmosphérique

Modèle lagrangien (Code Saturne)

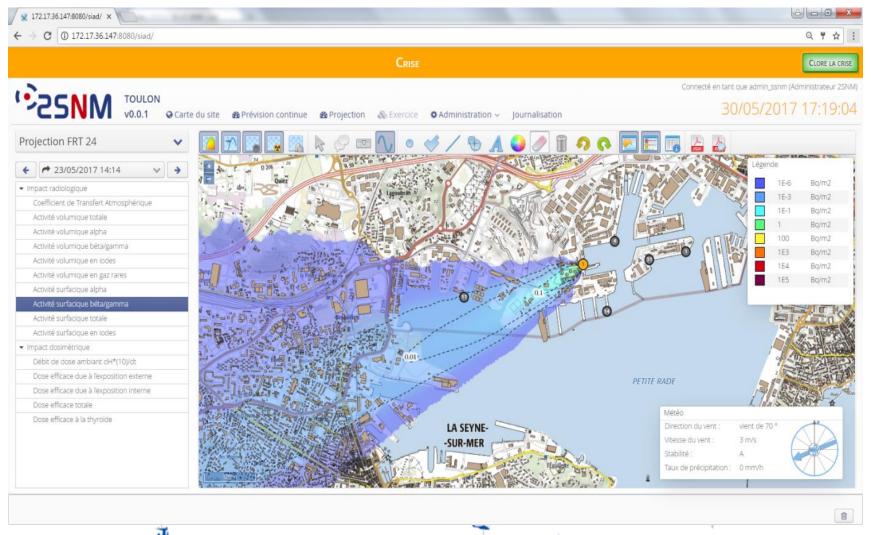



Avantages


- Prend en compte les reliefs et les obstacles,
- Prend en compte les variations météorologiques
- Bien adapté pour le champ proche et les reliefs urbains

Inconvénients

- Temps de calcul élevés
- Difficile à développer et à paramétrer
- Nécessite de connaître les champs de vents



Définition du terme source

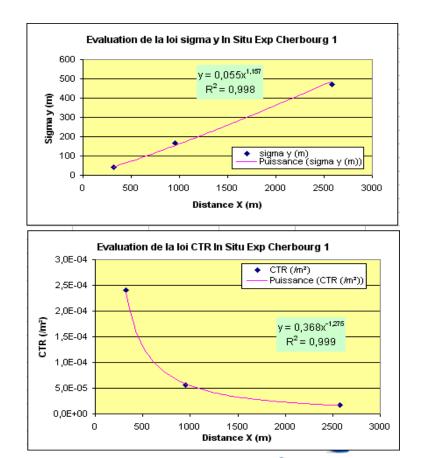
2SNM NG - Performances attendues

Sur les résultats de calculs :

- ✓ Coefficient de transfert atmosphérique dans l'axe du panache valide à moins d'un facteur 3 pour des distances au point de rejet comprises entre 100 m et 2000 m
- ✓ Largeur horizontale du panache valide à moins d'un facteur 1,5 pour des distances au point de rejet comprises entre 100 m et 2000 m
- ✓ Activités des radionucléides dans l'air et déposés au sol avec un écart maximum de 30% par rapport aux calculs analytiques effectués par la marine
- ✓ Doses et débits de doses avec un écart maximum de 30% par rapport aux calculs analytiques

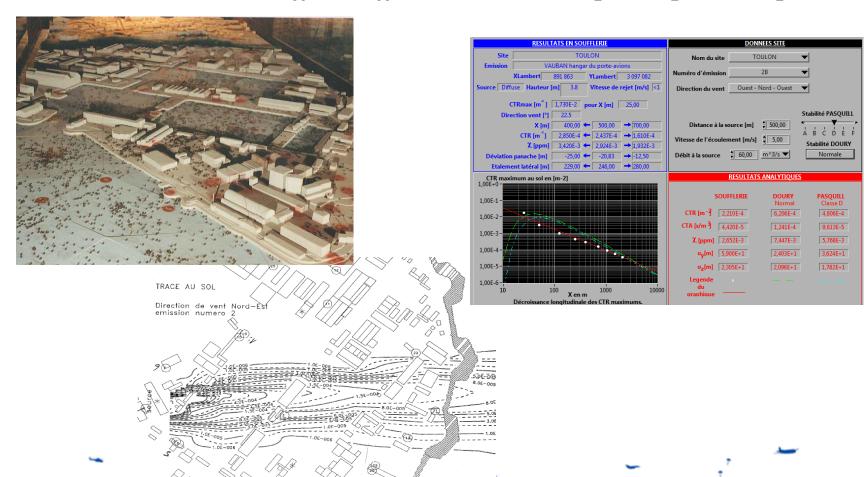
Sur les temps de calculs :

- ✓ En mode « alarme », modélisation du panache et calculs des doses et débits de doses toutes les 15 min
- ✓ En mode « projection », modélisation du panache à $t_0 + 1$ h et calcul des doses correspondantes en 10 min maximum avec possibilité par l'opérateur d'augmenter la durée de projection par pas d'une heure.



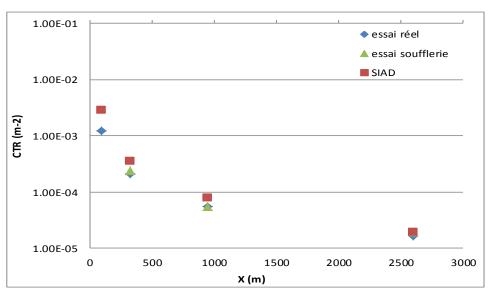
2SNM NG - Validation de la dispersion **GE**/

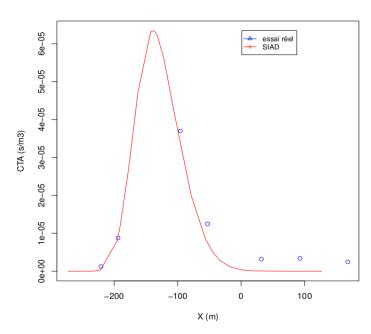
Utilisation d'essais in-situ effectués sur les sites de Cherbourg et Toulon



2SNM NG - Validation de la dispersion **GE**/

Utilisation d'essais en soufflerie effectués sur des maquettes pour chaque site




2SNM NG – Validation de la dispersion **6**

Validation de la dispersion atmosphérique sur essai in-situ

	90 m	325 m	950 m	2600 m
CTR maximum essai réel (m ⁻²)	1.23E-03	2.07E-04	5.43E-05	1.62E-05
CTR maximum soufflerie (m ⁻²)		2.41E-04	5.59E-05	1.94E-05
CTR maximum SIAD (m ⁻²)	2.69E-03	3.65E-04	9.30E-05	2.17E-05
CTR essai réel / CTR SIAD	0.5	0.6	0.6	0.7
CTR soufflerie / CTR SIAD		0.7	0.6	0.9

Validation de la largeur du panache

Validation des CTA dans l'axe

2SNM NG - Validation des calculs de dose **GEA**

Comparaison des calculs du SIAD avec ceux réalisés en interne par le GEA

Distance	<u>:</u> 100 m						
		Dose efficace totale (Sv)			Dose équivalente thyroïde (Sv)		
Pas de temps (h)	Débit de rejet (Bq/s)	<u>SIAD</u>	<u>GEA</u>	Rapport	<u>SIAD</u>	<u>GEA</u>	<u>Rapport</u>
1	1,00E+09	1,74E-07	2,12E-07	0,82	7,87E-08	9,81E-08	0,80
2	1,00E+09	3,37E-07	3,52E-07	0,96	1,57E-07	1,63E-07	0,96
3	1,00E+09	5,06E-07	4,87E-07	1,04	2,35E-07	2,26E-07	1,04
<u>Distance</u> : 1000 m							
		Dose efficace totale (Sv)			Dose équivalente thyroïde (Sv)		
Pas de temps (h)	Débit de rejet (Bq/s)	SIAD	<u>GEA</u>	Rapport	SIAD	<u>GEA</u>	Rapport
1	1,00E+09	1,51E-08	1,46E-08	1,04	7,00E-09	6,75E-09	1,04
2	1,00E+09	3,18E-08	2,57E-08	1,24	1,47E-08	1,19E-08	1,24
3	1,00E+09	4,84E-08	5,01E-08	0,97	2,25E-08	2,32E-08	0,97
Distance	<u>:</u> 2000 m						
		Dose efficace totale (Sv)		Dose équivalente thyroïde (Sv)			
Pas de temps (h)	Débit de rejet (Bq/s)	SIAD	<u>GEA</u>	Rapport	SIAD	<u>GEA</u>	Rapport
1	1,00E+09	5,90E-09	7,80E-09	0,76	2,73E-09	3,62E-09	0,76
2	1,00E+09	1,40E-08	2,24E-08	0,73	6,48E-09	1,04E-08	0,73
3	1,00E+09	2,15E-08	2,08E-08	1,04	9,97E-09	9,62E-09	1,04

Merci pour votre attention

