<u>Ceatech</u>

ÉTUDE DES PHÉNOMÈNES DE DISCRIMINATION NEUTRON/GAMMA DANS LES SCINTILLATEURS PLASTIQUES

THÈSE SOUTENUE LE 13 MAI 2014

Concours des jeunes dans la radioprotection Le 17/06/15, Reims, France | Pauline Blanc <u>Directeur</u> : Robert Pansu (CNRS/ENS-CACHAN) <u>Encadrants</u> : Stéphane Normand, Matthieu Hamel, Licinio Rocha (CEA) <u>Encadrant industriel</u> : Nabil Menaa (CANBERRA, BU mesure nucléaire d'Areva)

CANBERRA

list

CARNOT digiteo

Ceatech contexte industriel

- Homeland Security (frontières, aéroports, nonprolifération)

Introduction | Dicrimination n/v | Résultats | Conclusion

 Caractérisation de matériaux radioactifs par la détermination du flux de neutrons

Les détecteurs les plus communément utilisés : Compteurs proportionnels à gaz ³He (neutrons thermiques) → Pénurie

→ Des alternatives disponibles :

- □ Compteurs proportionnels à gaz BF₃
- Compteurs proportionnels au Bore
- Scintillateurs

*** Scintillateurs organiques**

- Scintillateurs verre sensibles aux neutrons
- Scintillateurs fibres sensibles aux neutrons
- Fibres sensibles aux neutrons recouvertes de matériaux scintillams

(Peerani et al. NIM-A 696 (2012) 110-120)

Détection directe de neutrons rapides

Contrairement au gaz ³He : Discrimination n/γ ✓ ✓ ✓

	Cristaux	Liquides	Plastiques	
Synthèse	×	\checkmark	~	
Point Éclair	\checkmark	×	\checkmark	
Toxicité	\checkmark	×	\checkmark	
Volume	×	\checkmark	\checkmark	
Coût	×	\checkmark	\checkmark	
Vieillissement	\checkmark	\checkmark	~	
Sensibilité au Quenching	~	×	\checkmark	
Discrimination n/γ	\checkmark	\checkmark	?	

Introduction | Dicrimination n/y | Résultats | Conclusion

<u>Qu'est-ce qu'un scintillateur</u> ? Système moléculaire capable d'émettre de la lumière après interaction rayonnement / matière

Diagramme de Perrin Jablonski de Molécules fluorescentes

Ceatech problématique

Introduction | Dicrimination n/y | Résultats | Conclusion

Théorie de Voltz et Laustriat

R. Voltz & G. Laustriat Radioluminescence des milieux organiques I. Étude cinétique *J. Phys. France*, **1968**, *29*, 159-166

Processus d'ionisation

- Gamma → électrons :
 - Peuplement d'états singulets (S)
- Neutrons via protons de recul :

Peuplement d'états triplets (T)

Scénario Gamma

Scénario Neutron

171

ceatech problématique

list

Gamma via électrons de recul : Effet Förster $S_1 \rightarrow S_0$: Fluorescence Prompte Neutrons via protons de recul :

Effet Dexter

TTA suivies par $S_1 \rightarrow S_0$:

Fluorescence retardée

(TTA = T-T Annihilation)

Introduction | Dicrimination n/y | Résultats | Conclusion

Dans les liquides et les cristaux cette différence est marquée au contraire des plastiques

Discrimination $n/y \rightarrow sur la forme du signal (PSD)$

Junes Professionnelles Radioprotection SFRP, Reims, France | Pauline Blanc - 6

Ceatech MATÉRIAUX PLASTIQUES POUR LA PSD

Références : Brooks, F. D. et al. IRE Trans. Nuc. Sci. 1960, NS-7, 35-38

Zaitseva, N. et al. Nucl. Instr. and Meth. A 2012, 668, 88-93

Nature	Plastic 77 ou NE-150 Brooks 1960	EJ-299-33 Zaitseva 2012					
Matrice Polymère	Polystyrène (PS)	Polyvinyltoluène (PVT)					
Fluorophore(s) Primaire(s)	4-lsopropylbiphényle (IP, 10 wt%) & <i>p</i> -terphényle (pT, 35 mg/L)	2,5-diphényloxazole (PPO, 30 wt%)					
Fluorophore Secondaire	1,4-bis-(5-phényl-2-oxazolyl)benzène (POPOP, 0,5 mg/L)	9,10-diphénylanthracène (DPA, 0,2 wt%)					
Secondaire (POPOP, 0,5 mg/L) (DPA, 0,2 wt%) 0							
Energy [kevee] (Energy [kevee] s Professionnelles Radioprotection SFRP, Reims, France Pauline Blanc -							

Intro duction | Dicrimination n/y | Résultats | Conclusion

list

Introduction | Dicrimination n/y | Résultats | Conclusion Ceatech présentation des scintillateurs

171

Concours Jeunes Professionnelles Radioprotection SFRP, Reims, France | Pauline Blanc - 8

ceatech Efficacité de PSD

600 T1-B29-P5 500 Neutrons - 10 400 QDel / QTot 8 300 6 200 4 Gamma 100 2 0 400 500 600 700 800 900 1000 1100 1200 Energie (keVee) 100 200 300 0 T1-B29-P5 $FOM = \frac{D_{\gamma - n}}{L_{\gamma - FWHM} + L_{n - FWHM}}$ 700 FOM @ 500 keVee ± 10% Projection 600 Sdnoo Outon Fit Gamma Fit Neutrons Gamma Neutrons Lγ-FWHM _γ-FWHM 100 Dγ-n 0 – ĩΠ ²⁵⁰ **Q**Del **/ Q**Tot 400 450 100 150 200 350

Concours Jeunes Professionnelles Radioprotection SFRP, Reims, France | Pauline Blanc - 10

li/t

Les scintillateurs commerciaux plastiques, EJ-200, EJ-299-33 et le liquide BC-501A constituent les références en terme d'efficacité de PSD pour un volume de Ø 50 mm x h 50 mm

Ceatech paramètres impactant la PSD

La composition d'un scintillateur est un système multi-paramétrique

1. Matrice polymère (monomères aromatiques) ou le solvant

Le type de réticulation de la matrice (éventuellement)

6. Rendement lumineux

Quels sont ceux qui jouent un rôle dans les transferts d'énergie qui mènent à la PSD ?

Introduction Dicrimination n/y Résultats PSD Résultats Photolyse LASER Conclusion Ceatech PSD: SCINTILLATEURS BASÉS SUR BROOKS Lift

→modifiés jusqu'à devenir stable chimiquement et en termes d'efficacité de PSD

Ceatech psd: scintillateurs innovants

Introduction | Dicrimination n/y | Résultats PSD | Résultats Photolyse LASER |

14

list

Conclusion

1- Peut-on simuler par LASER des traces denses (neutrons) ?

Concours Jeunes Professionnelles Radioprotection SFRP, Reims, France | Pauline Blanc - 15

Introduction | Dicrimination n/y | Résultats PSD | Résultats Photolyse LASER | Conclusion STREAK CAMÉRA – LUMINESCENCE : T1-B17-P20

2 – Au niveau de quel(s) composé(s) les transferts d'énergie à l'origine de la PSD se produisent-ils ?

+ La nature des états excités mises en jeux lioprotection SFRP, Reims, France | Pauline Blanc - 17

ceatech conclusions

- I. Influence de la composition chimique des scintillateurs plastiques
 - Matrice polymère / Réticulation ++
 - □ [] du fluorophore primaire ++
 - [] et nature du fluorophore secondaire dépendent de la combinaison +
- II. Scintillateur plastique discriminant T1-B17-P20 < EJ-299-33 (x1.5 à 2.2 MeV)
 - □ Doper à 29 wt% \rightarrow x2 en efficacité de PSD
- III. Simulation traces denses neutrons à l'aide d'un laser femtoseconde
- IV. États triplets en liquide / Faisabilité d'expériences d'absorption transitoire

I. Étude systématique de deux compositions

[PS+biphényle+POPOP] et [PVT+DPA+PPO]

→Fort potentiel de la streak caméra

- II. Benchmark scintillateur plastique vs ³He
- **III. Poursuivre le développement de matériaux innovants**
 - → Systèmes intégrés

Introduction | Dicrimination n/y | Résultats PSD | Résultats Photolyse LASER | Valorisation

ceatech publications / brevet

✓ P. Blanc, H. O. Menlove, S. J. Tobin, S. Croft, A. Favalli

« An integrated delayed-neutron differential die-away instrument to quantify plutonium in spent nuclear fuel » Journal of Nuclear Material Management (JNMM), Spring 2012, Volume XL, No. 3, 70

✓ P. Blanc, M. Hamel, C. Dehé-Pittance, L. Rocha, R.B. Pansu & S. Normand

« Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions » Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014, 750, 1 – 11

✓ P. Blanc, M. Hamel, L. Rocha, R.B. Pansu, F. Gobert, I. Lampre & S. Normand

« Intrinsic evaluation of neutron/gamma discrimination in plastic scintillators »

Nuclear Science, IEEE Transactions on, 2014, en cours de publication

ORAL INVITÉ À LA CONFÉRENCE ANIMMA (Marseilles) - Advancements in Nuclear Instrumentation Measurement Methods and their Applications

✓M. Hamel, P. Blanc, C. Dehé-Pittance, S. Normand, French Patent Application 2013, FR1352072.

✓ P. Blanc, P. Sibczynski, J. Iwanowska, F. Carrel, M. Hamel, A. Syntfeld-Kazuch & S. Normand

« A fluocarbon plastic scintillator for neutron detection : Proof of concept »

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, soumis

✓ **P. Blanc**, J. Iwanowska, P. Sibczynski, M. Hamel, L. Rocha, R.B. Pansu & S. Normand

« Benchmark of two neutron/gamma pulse shape discrimination efficiency determination methods on the plastic scintillator EJ-299-33 vs home

made compositions »

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, en cours de soumission

✓ P. Blanc, M. Hamel, L. Rocha, S. Normand, R.B. Pansu

« Study and understanding of neutron/gamma discrimination in organic plastic scintillators »

ORAL À LA CONFÉRENCE NSS/MIC (Anaheim) – IEEE Nuclear Science Symposium Record 2012, 1978-1982, Proceeding

✓M. Hamel, P. Blanc, L. Rocha, S. Normand, R.B. Pansu

« Study and understanding of neutron/gamma discrimination processes in organic plastic scintillators »

CONFÉRENCE SPIE for Optics and Photonics - 2013, 8710F-8710F-7, Proceeding

Concours Jeunes Professionnelles Radioprotection SFRP, Reims, France | Pauline Blanc - 20

1771

MERCI POUR

VOTRE

ATTENTION

Introduction | Dicrimination n/y | Résultats | Conclusion

<u>Qu'est-ce qu'un scintillateur</u> ? Système moléculaire capable d'émettre de la lumière après interaction rayonnement / matière

Diagramme de Perrin Jablonski de Molécules fluorescentes

Ceatech problématique

Théorie de Voltz et Laustriat

R. Voltz & G. Laustriat Radioluminescence des milieux organiques I. Étude cinétique *J. Phys. France*, **1968**, *29*, 159-166

Processus d'ionisation

- Gamma → électrons :
 - Peuplement d'états singulets (S)
- Neutrons via protons de recul :

Peuplement d'états triplets (T)

✓Introduction / Contexte ✓ Matériaux Scintillants **Discrimination n/y** \circ Caractérisation et Discrimination n/ γ Rendement lumineux ***PSD** et analyse des formes brutes **OPhotolyse LASER Femtoseconde *Photomultiplicateur** Streak Caméra **Conclusion et Perspectives**

Temps (ns)

300

400

500ns

0

100

Soutenance de thèse, 13/05/14, Saclay, France | Pauline Blanc - **10**

Ceatech RENDEMENT LUMINEUX (LO)

Introduction | Dicrimination n/y | Résultats PSD | Résultats Photolyse LASER | Conclusion

Ceatech discrimination Neutron/Gamma

Méthode de PSD : Comparaison de charge t2 Reférence SCINTILLATEUR QDC-VME ORGANIQUE Retardée CAEN Porte Temporelle V465 Timing HT NSEC NSEC CFD AMP Delay Delay 583 N1470 2111 ORTEC CAEN CANBERRA PMT 2 ns H-1949-51 HT Anode

Source neutron ²⁴¹AmBe ~2x10⁷ n/s

Référence : Pozzi et al.

Analysis of neutron and photon detection position for the calibration of plastic (BC-420) and liquid (BC-501) scintillators

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 524, 92 - 101

Concours Jeunes Professionnelles Radioprotection SFRP, Reims, France | Pauline Blanc - 15

Ceatech LO: SCINTILLATEURS BASÉS SUR BROOKS

Soutenance de thèse, 13/05/14, Saclay, France | Pauline Blanc - **19**

1171

Introduction | Dicrimination n/y | Résultats PSD | Résultats Photolyse LASER | Conclusion **NOUVELLE COMPOSITION DU LABORATOIRE** Ceatech **RÉTICULATION DE TYPE 1**

Ceatech NOUVELLE COMPOSITION DU LABORATOIRE RÉTICULATION DE TYPE 2

MODIFICATION DE LA MATRICE POLYMÈRE →Hausse de la PSD et du LO de T1 à T2

AUGMENTATION DU VOLUME

→Baisse de la PSD
 →Réabsorption du matériau
 →Spectre doit être décalé

list

→ Les transferts d'énergie mis en jeux dans la fluorescence retardée sont très dépendants des systèmes chimiques

Soutenance de thèse, 13/05/14, Saclay, France | Pauline Blanc - 22

→ La séparation enregistrée est égale si le système est optimisé

Ceatech BILAN DES PARAMÈTRES IMPACTANT LA PSD

list

Scintillateur	Volume	Matrice	[] Fluo primaire	[] Fluo(s) secondaire(s)	Énergie	PSD	Facteur
Brooks	Constant	T0 → T1	Constante	Constante	1.25 MeV	7	x 37
Brooks	Constant	T0 →T1	Constante	Constante	2.30 MeV	7	х З
Brooks	Constant	T1	Constante	Retrait 2 ^{ème}	Toutes	Perte	-
Laboratoire	Constant	T1	Constante	Ajout 2 ^{ème}	Toutes	=	-
Laboratoire	Constant	T1	x 1.7	Constante	1.25 MeV	1	x 2.6
Laboratoire	x 3.4	T1	Constante	Constante	1.25 MeV	1	x 3.4
Laboratoire	x 3.4	T1	Constante	Constante	1.50 MeV	1	x 1.6
Laboratoire	Constant	T1	Constante	Retrait	Toutes	Perte	-
Laboratoire	/ 6	T1→T2	Constante	x 4	1.25 MeV	7	x 1.6
Laboratoire	x 12	T2	Constante	Constante	1.25 MeV	Y	x 12
Zaitseva	Constant	Constant	Constante	Retrait	Toutes	=	-

Les transferts d'énergie qui mènent à la PSD dépendent de la composition chimique

Soutenance de thèse, 13/05/14, Saclay, France | Pauline Blanc - 24

• Sur toutes les longueurs sommées, le biphényle domine à 17 wt%

→ Seuil en concentration de fluorophore primaire en plastique

○ Quelle que soit l'énergie → un léger allongement du déclin du PS à 17 wt%

→ Révélateur d'états excités de la matrice à vie plus longue

Soutenance de thèse, 13/05/14, Saclay, France | Pauline Blanc

Ceatech NANOSECOND LASER PHOTOLYSIS

20 mJ, 1,8-naphthalimide in Toluene: Discriminates

Hamel *et al.*, *Nucl. Instr. And Meth. A*, **2009**, Vol. 602, 425-431. 4-ethyl-*N*-(2',5'-di-*t*-butylphenyl)-1,8-naphthalimide

■Excitation: 355 nm (naphthalimide) ■Absorption: 480 nm ■(Naphthalimides T, ref. Malval 2008) ■Gased with N₂ → Avoid T Quenching

111

□Absorption λ
□Exponential Kinetic
□Time Range
□Transient State: T

Ceatech NANOSECOND LASER PHOTOLYSIS

list

TRIPLET ABSORPTION SPECTRUM

→Similar behaviors: T states from Naphthalimide are formed →No delayed luminescence observed → No TTA observed

Soutenance de thèse, 13/05/14, Saclay, France | Pauline Blanc

2 – Au niveau de quel(s) composé(s) les transferts d'énergie à l'origine de la PSD se produisent-ils ?

+ La nature des états excités mis en jeux

Soutenance de thèse, 13/05/14, Saclay, France | Pauline Blanc - **30**

Ceatech STREAK CAMÉRA - LUMINESCENCE : T1-B17-P20

Variation de la densité de puissance

 Net effet sur le PS :
 Accélération avec l'énergie qui augmente entre 5 et 8 µJ

L'effet sur le biphényle
 (fluorophore primaire) n'a pas pu
 être déterminé

• Aucun effet sur le POPOP

Concours Jeunes Professionnelles Radioprotection SFRP, Reims, France | Pauline Blanc - **32**

Ceatech Introduction Dicrimination n/y | Résultats PSD | Résultats Photolyse LASER Conclusion STREAK CAMÉRA – LUMINESCENCE : PS RÉTICULÉ + BIPHÉNYLE [X]

2 μJ

- o À 4 et 9 wt% le PS domine l'émission à 315 nm
- À 17 wt% le biphényle domine l'émission à 368 nm
- o À 17 wt% l'amplitude relative du PS augmente avec la puissance
 - Composition ternaire améliore les transferts d'énergie

Soutenance de thèse, 13/05/14, Saclay, France | Pauline Blanc - 34

Introduction | Dicrimination n/y | Résultats PSD | Résultats Photolyse LASER | Conclusion ABSORPTION TRANSITOIRE 1,8-NAPHTALIMIDE DANS LE TOLUÈNE

li/t

Discrimination n/γ :

Ceatech

\circ Absorption T₁ → T₂ à 550 nm

- Absorption du cation à 700 nm (?)
- Absorption de l'anion à 420 nm

 Les triplets se forment dès 8 µJ :
 Seuil d'énergie des accélérations observées pour le plastique ternaire

Ceatech Introduction | Dicrimination n/y | Résultats PSD | Résultats Photolyse LASER | Conclusion STREAK CAMÉRA – LUMINESCENCE : EN FONCTION DE LA COMPOSITION CHIMIQUE

- 1. PS (T0, non réticulée) (matrice polymère)
 - → Effet de la réticulation sur la :
 - * Nature des transferts
 - Efficacité des transferts
 - → Aucun effet de puissance non réticulé
 - * Seuil d'énergie déjà atteint
 - Fluorophore primaire nécessaire
- 2. PS (T1, réticulé)
 - + **Biphényle : concentration varie à 4, 9 et 17 wt%**