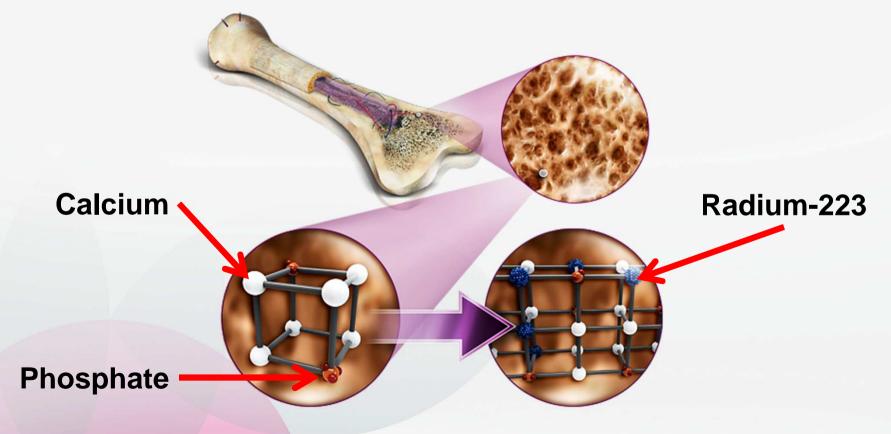


Exposition radiologique des professionnels de santé dans le cadre d'un traitement au Xofigo®

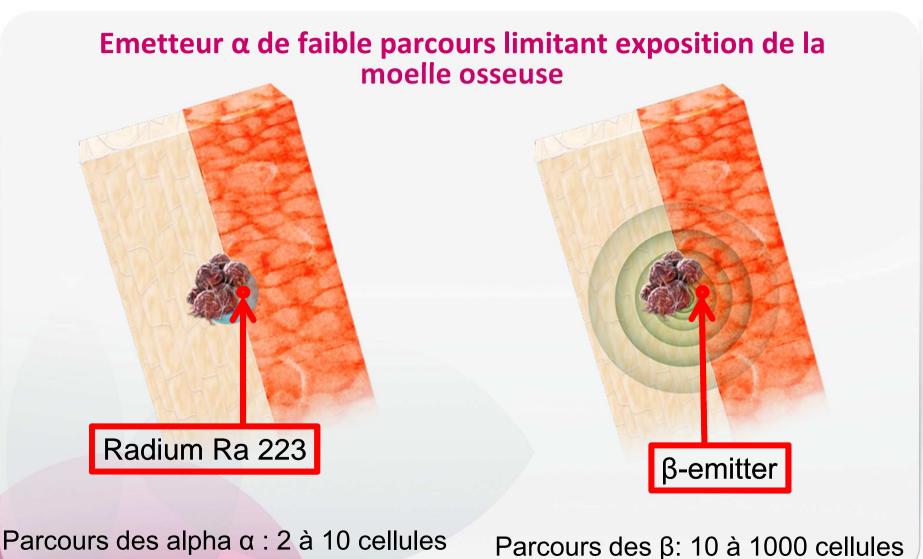
Julien Mackowiak, Pierre Le Fur, Laurence Calas, Lore Santoro

Julien Mackowiak
Institut régional du Cancer de Montpellier | Val d'Aurelle
SFRP Reims – 18 juin 2015

Intérêt du ²²³RaCl₂ - Xofigo®


Indication:

- Traitement des métastases osseuses du cancer de la prostate résistant à la castration chimique (CPRC)
- Avantages de ce médicament radiopharmaceutique:
 - Administré en ambulatoire
 - Prolonge la survie globale du patient
 - Présente un profil de tolérance très satisfaisant
 - Retarde la survenue du premier évènement osseux


Schéma thérapeutique du ²²³RaCl₂ Xofigo®

Le di-chlorure de Radium 223 s'incorpore dans les cristaux d'Hydroxyapatite, composant de l'os

Schéma thérapeutique du ²²³RaCl₂ Xofigo®

Soit 0,08 mm

Propriétés physiques du ²²³Ra et de ses descendants

Principales émissions du ²²³Ra:

	Gamm	a/x	Beta (E	max)	Electr	ons	Alph	na
	E (keV)	%	E (keV)	%	E (keV)	%	E (keV)	%
E1	269	14	541	5	130	6	6623	84
E 2	351	13	1373	93	200	12	6819	80
E 3	832	3	1422	100	266	3	7386	100
% omis		135		< 3		155		235

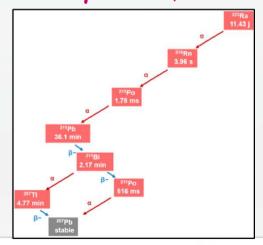
$$\alpha$$
 : 95,3%

$$\beta^{-}$$
: 3,6%

$$T_{1/2} = 11,43 \text{ jours}$$

$$e(g) = 1.10^{-7} \text{ Sv/Bq}$$

Facteur d'absorption intestinale:


$$f1 = 0,2$$

$$h(g) = 5.7.10^{-6} \text{ Sv/Bq}$$

Coefficient de volatilité:

$$k = 0.01$$

γ / **X**: 1,1%

Institut régional du Cancer Montpellier | Val d'Aurelle

Objectifs de l'étude

 Répondre à la réglementation issue du code du travail et aux recommandations ASN dédiées au ²²³Ra...

Mais aussi en interne

- Appréhender le risque lié au rayonnement alpha:
 - Produit « exotique », jamais utilisé en service
 - Répondre aux interrogations des différents acteurs
 - Se détacher de l'habitude de travail des RN conventionnels
 - Mettre l'accent sur la méticulosité pour éviter les contaminations
 - Quantifier les expositions beta et photonique
 - Optimiser l'utilisation des EPI et les méthodes de travail

Prérequis à l'étude de poste

- Manipulations à blanc:
 - Optimisation de la gestuelle
 - Choix des EPI
 - Coordinations des différents professionnels
- Identification des méthodes à toutes les étapes:
 - Check-lists
- Formation du personnel:
 - Etalonnage activimètre
 - Utilisation détecteur et sonde alpha
 - Procédures de décontamination

Bases de notre première approche du Ra223 « surprotectrice » Exposition externe: +++ et contamination +++

Le traitement en pratique

1. Contrôles radiologiques

2. Contrôle activimètre / mesure flacon

3. Tirage seringue ²²³Ra

4. Transfert seringue et valise plombée

Injection patient

et

Raccord seringue

6. Surveillance patient

7. Contrôles d'ambiance et de surface

Matériel:

- Boîte à gants plombée, flacon + protection plombée
- Seringue 10 mL de 3,6 MBq (50 kBq/kg) + filtre de prélèvement
- Protège seringue tungstène
- Valise de transport (10 mm Pb), chariot de transport
- Paravent plombé (10 mm Pb)
- Radiamètre FH40G-L 10 + sonde alpha (FHZ 732GM)

Méthodes:

- Manipulations à blanc, identification des étapes exposantes
- Mesures intégrées flacon, seringue, BAG, patient
- Relevé des distances et temps d'exposition à chaque étape
- Extrapolation des doses efficaces et équivalentes pour 12 mois

Choix du protège seringue pour l'exposition extrémités:

Protège-seringues comparés/utilisés

Sans protège-seringue

W:7 mm

Protège-seringue N°2

Corps -> Plexiglas/W: 1/6 mm

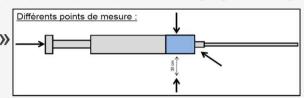
Piston -> W: 9 mm

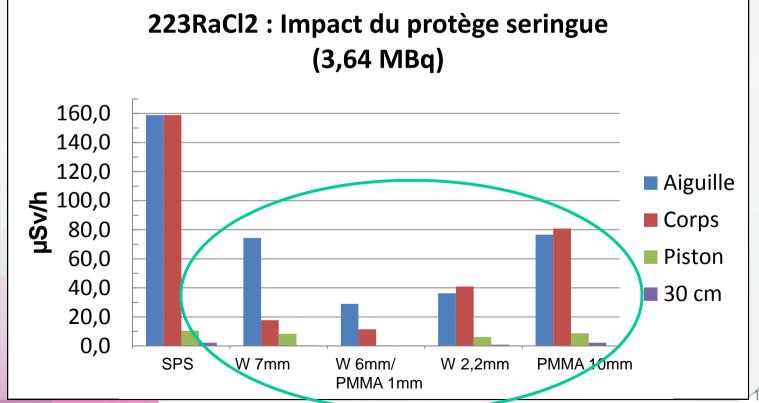
Protège-seringue N°3

W: 2,2 mm

Protège-seringue N°4

Plexiglas: 10 mm





- 30 mesures de débit de dose: radiamètre FH40G-L10
 - En 3 points: « aiguille-corps-piston »

Au pseudo-contact et à 30 cm

Institut régional du Cancer

Débits de dose liés à l'exposition:

Débits de dose PS N°1 = 7mm W (3,6 MBq)

	[µSv/h]	[µSv/h/MBq]
Aiguille	74,47	20,46
Corps	17,80	4,89
Piston	8,37	2,30
30 cm	0,44	0,12

Flacon de 6,89 MBq					
	Débits d'équivalent de dose ambiant H*(10)				
gé		[µSv/h]	[µSv/h/MBq]		
Protégé	À 75 cm	0,31	4,5E-2		
Pro	À 35cm	0,54	7,9E-2		
	Au contact	22,20	3,2		

Débits d'équivalent de dose ambiant H*(10)

gé		[µSv/h]	[µSv/h/MBq]
rotégé	À 75 cm	0,85	1,2E-1
bre	À 35cm	3,50	5,1E-1
	Au contact	142,00	20,6

Débits de dose moyens mesurés sur patient (3,6 MBq)				
1m en post-injection	0,54 ± 0,26 μSv/h			
1m à J+2	$0.29 \pm 0.08 \mu \text{Sv/h}$			

11

• Résultats: Exposition externe faible

		Temps	Dose intégrée	
Étapes	Exposition	exposition	[µSv]	
		[s]		
1.Mesure flacon	Corps entier	60	4,5.10 ⁻³	
1.IVICSUIC HACOH	Extrémités	40	5,8.10 ⁻¹	
2.Préparation seringue	Corps entier	90	8,0.10 ⁻³	Corps entier
,	Extrémités	90	3,5	=
3.Protège seringue + aiguille protection	Corps entier	105	9,0.10 ⁻³	5,3.10 ⁻² μSν
i digeine protestion	Extrémités	105	9,3.10 ⁻¹	Extrémités
4.Transport seringue	Corps entier	135	1.9.10 ⁻⁵	=
garagara	Extrémités	15	4,7.10 ⁻²	7,9 µSv
5.Administration du	Corps entier	90	3,0.10 ⁻³	
Xofigo®	Extrémités	90	2,8.10 ⁻¹	
6.Dé-perfusion	Corps entier	610	1,5.10 ⁻¹	
+surveillance patient	Extrémités	10	2,4.10 ⁻²	12

Prévisionnel dosimétrique annuel:

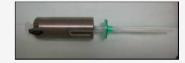
• Sur la base de 10 patients/an, soit 240 préparations et injections:

Prévisionnel de dose (12 mois)	Corps entier [µSv]	Extrémités [µSv]		
Préparation seringue	5,16	1202,40		
Injection	0,77	78,48		
Dé perfusion - Surveillance patient	36,00	5,76		
Total [µSv]				
Dose efficace	12,7	Catágorio B		
Dose équivalente extrémités	1893,6	Catégorie B		

Contamination:

- Moyens simples à mettre en place pour la prévenir
- Mesures prises efficaces
- Pas de contamination majeure

Points chauds identifiés:


- Filtre de prélèvement (10% de la dose injectée) +++
- Aiguille « prise d'air du flacon » ++
- Enceinte blindée: extrémités des doigts (gants)
- Protège seringue (aiguille)
- Pas de contamination > à 3cps (1 goutte = 0,05mL = 1440 cps)

Discussion

Exposition du personnel:

- Choix du protège seringue: « dextérité-méticulosité-protection »
 Comparaison préparation seringue ^{99m}Tc (665MBq): 3 x plus irradiant (25,6 μSv vs 7,9 μSv)
- Mise en place d'un système d'injection anti-reflux

Utilisation de terrain chronophage:

- Contrôles radiologiques à chaque étape
- Détection Alpha peu évidente: type de sonde, taille du détecteur, conditions de mesures (ambiance, hygiène)
- Mobilisation importante du personnel en temps et en nombre
- Réorganisation de l'activité du service

Bénéfice patient:

- Pour patient CPRC
- Etude clinique pour cancer du sein

Conclusion

- Le risque d'expo externe faible => on se concentre sur la prévention du risque de contamination externe et interne
- Les utilisateurs, par les tests à blanc, l'EDP et leur convenance, déterminent le type d'EPI contre l'exposition externe
- REX issu du service: parti d'une base stricte, maintenant plus modéré sur le risque d'exposition externe, mais toujours vigilant sur la contamination
- Transfert de compétence professionnelle possible une fois les étapes maitrisées

Merci de votre attention!