

Évaluation technique d'un débitmètre/dosimètre dans le cadre du contrôle réglementaire des générateurs électriques de Rayons X utilisés en radiodiagnostic

Patrice MARTEL
patrice.martel@apave.com
Unité Radioprotection
APAVE parisienne

Congrès de la Société Française de Radioprotection La Hague, 17 et 18 novembre 2009

PLAN

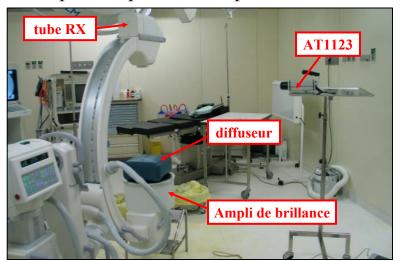
- 1. Introduction
- 2. Méthodologie
- 3. Matériel
- 4. Résultats / Interprétation
- 5. Conclusion

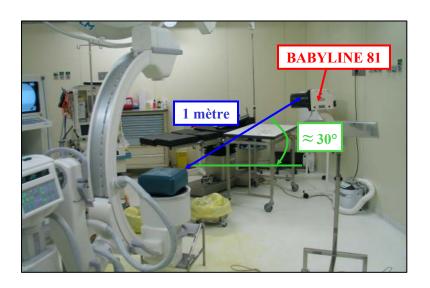
INTRODUCTION

Contexte

- ✓ contrôle technique d'ambiance [arrêté du 26 octobre 2005] : mesures des débits d'équivalents de dose aux postes de travail (estimation de la dose efficace ou équivalente)
- √ bonne pratique : emploi de débitmètres étalonnés pour la grandeur opérationnelle H*(10) (rayonnements fortement pénétrants, énergie > 15 keV)
- ✓ problématique : appareils de mesures disponibles sur le marché généralement non adaptés aux **émissions faiblement énergétiques et brèves** des générateurs électriques de **Rayons X** utilisés en **radiodiagnostic**
- ✓ commercialisation récente d'un **débitmètre/dosimètre polyvalent AT1123** (ATOMTEX/APVL) : choix d'une évaluation technique avant investissement

Objectif de l'évaluation technique


✓ Vérification de certaines caractéristiques du débitmètre/dosimètre AT1123 essentielles pour le contrôle des installations de radiodiagnostic : gamme basse d'énergie et réponse en fonction du temps d'exposition (émission à court terme).



MÉTHODOLOGIE

➤ Basée sur la comparaison des mesures affichées par l'AT1123 à celles d'une chambre d'ionisation <u>de référence</u> : la BABYLINE 81 (CANBERRA)

Exemple : ampli de bloc opératoire

Récapitulatif des conditions de mesures :

- √ diffuseurs conformes aux normes NFC 15-160 (hormis mammographie, fantôme MTM 100)
- ✓ distance diffuseur zone de détection de l'appareil de mesure fixée à 1 mètre
- ✓ angle entre le diffuseur et la zone de détection de l'appareil de mesure ≈ 30 degrés
- ✓ installations permettant le réglage manuel des kV, mA ou mAs et temps d'exposition.

MATÉRIEL

> Récapitulatif des principales données constructeurs

❖ Scintillateur plastique AT1123

- mesure : X et gamma / (sensibilité bêta)
- grandeur mesurée : H*(10)
- gamme d'énergie : 15 keV à 10 MeV
- 3 gammes : 10 nSv à 10 Sv (irradiation à court terme)
- 3 gammes : 5 μSv/h à 10 Sv/h (1, 2 et 3 / calcul)
- temps de réponse : 30 ms

Chambre d'ionisation BABYLINE 81

- mesure : électrons, X et gamma
- grandeur mesurée : D_t(3) / D_t(0,07) / H'(0,07)
- gamme d'énergie : 8 keV à 10 MeV
- 5 gammes : 10 μGy à 100 mGy
- 6 gammes : 10 μGy/h à 1 Gy/h
- temps de réponse : ≤ 5 s (gammes > à 100 μGy/h)

RÉSULTATS (1)

Réponse en fonction de la Haute Tension appliquée (énergie)

Cas du radiodiagnostic conventionnel

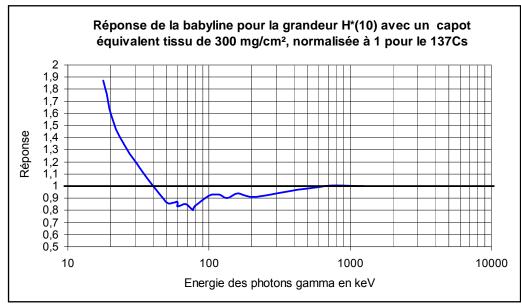
Intensité constante de 1 mA	BABYLINE 81		AT 1123	
	Débit de dose absorbée (µGy/h)		Débit d'équivalent de dose (µSv/h)	
Haute Tension (kV)	paroi 300 mg/cm²	paroi 7 mg/cm²	avec capot (25 keV à 10 MeV)	sans capot (15 keV à 10 MeV)
120	1200	1200	1130	1130
80	350	370	350	350
60	130	140	130	132
50	70	74	60	61

✓ Débits de dose similaires de 120 à 60 kV

Mesures réalisées avec un amplificateur de brillance de bloc opératoire en mode scopie continue.

Cas particulier de la mammographie (faibles énergies)

Charge constante de 100 mAs	BABYLINE 81		AT 1123	
	Dose absorbée (µGy)		Equivalent de dose (μSv)	
Haute Tension (kV)	paroi 300 mg/cm²	paroi 7 mg/cm²	avec capot (25 keV à 10 MeV)	sans capot (15 keV à 10 MeV)
35	2,4	3,6	1,3	1,4
28	1,1	1,6	0,50	0,54
23	0,4	0,7	0,17	0,19


 ✓ Rapport entre les débits de dose environ égal à 2 pour 28 kV

Mesures réalisées pour une anode et une filtration en Molybdène (Mo/Mo).

INTERPRÉTATION (1)

- <u>énergie moyenne</u> des Rayons X (keV) ≈ 2/3 Haute Tension (kV)
- exemple : 80 kV \approx 53 keV
- notre cas : énergie moyenne des Rayons X approximativement comprise entre 33 et 80 keV
- particularité de la mammographie (Mo/Mo) : raies d'émission de 17,5 et 19,6 keV
- ⇒ Procès verbal d'essais Babyline 91 / C.T.H.I.R. (*) 28/12/1990

- (*) Comité Technique d'Homologation de l'Instrumentation de Radioprotection
- Réponse entre 1,41 et 0,87
 pour énergie photons comprise entre 23,2 de 79 keV
 - Réponse = 1,87 pour 17,8 keV

<u>Pertinence</u> de la mesure H*(10) derrière une protection collective en mammographie ? (énergie RX inférieure à 15 keV)

✓ Réponse de l'AT1123 satisfaisante pour les énergies utilisées en radiodiagnostic

RÉSULTATS (2)

Réponse en fonction de la durée d'émission des Rayons X

Cas d'une table télécommandée en radiodiagnostic médical

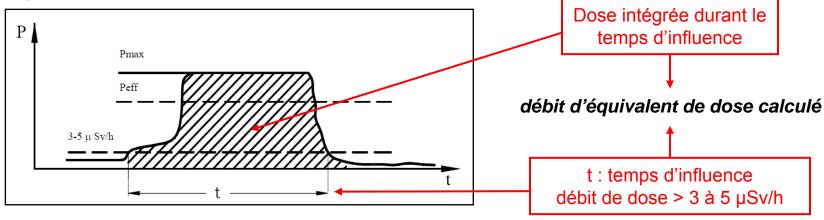
Haute Tension et Intensité constantes (100 kV; 100 mA)		BABYLINE 81		AT 1123	
		Paroi 300 mg/cm²		avec capot (25 keV à 10 MeV)	
Temps de pose (ms)	Charge (mAs)	Dose absorbée (µGy)	Débit de dose absorbée (µGy/h)	Equivalent de dose (µSv)	Débit d'équivalent de dose (µSv/h)
1250	125	18	48000	17,8	48000
400	40	5,6	(*)	5,7	42000
100	10	1,4	(*)	1,41	36000
25	2,5	0,4	(*)	0,36	32000
13	1,3	0,2	(*)	0	0

^(*) Débit de dose non mesuré car t < 1, 25 s (correspond en pratique au temps de réponse constaté pour les gammes de la Babyline 81 supérieures à 100 μGy/h).

- ✓ Doses similaires et proportionnelles au temps de pose
- X Débits de dose anormalement décroissants

Baisse des débits d'équivalents de dose <u>plus ou moins</u> prononcée en fonction du modèle et du type de générateur contrôlé (particulièrement pour les générateurs rétroalvéolaires couramment utilisés en radiodiagnostic dentaire).

Remarque : La Babyline 81 mesure une dose cohérente pour un temps de 1,6 ms !



[✓] Temps de réponse de 30 ms confirmé pour l'AT1123

INTERPRÉTATION (2)

Principe de calcul des débits d'équivalents de dose par l'AT1123

Figure extraite du manuel d'utilisation

Facteurs pouvant influencer le calcul :

- distribution de la dose dans le temps, fonction des caractéristiques du générateur (kV, mA)
- électronique de l'AT1123 (temps de montée et de descente), traitement du signal
- Risque non négligeable de sous-estimer les débits d'équivalents de dose!

Quoiqu'il en soit, l'estimation d'un débit d'équivalent de dose horaire pour un temps de pose court (inférieur à 1 seconde) n'est pas raisonnable d'un point de vue métrologique.

✓ Il convient donc de se limiter à la mesure d'équivalents de dose avec le scintillateur plastique.

RÉSULTATS (3)

Réponse en fonction de l'intensité du courant appliquée

Cas d'une salle d'os en radiodiagnostic médical

Haute Tension et temps de pose constants (70 kV; 200 ms)		BABYLINE 81		AT 1123	
		Paroi 300 mg/cm²		avec capot (25 keV à 10 MeV)	
Intensité (mA)	Charge (mAs)	Dose absorbée (µGy)	Débit de dose absorbée (*) (µGy/h)	Equivalent de dose (µSv)	Débit d'équivalent de dose (µSv/h)
100	20	1,7	30000	1,58	27200
200	40	3,4	58000	3	38000
400	80	6,7	non mesuré	6,2	62000

 [✓] Doses similaires et proportionnelles à l'intensité

X Débits de dose non proportionnels à l'intensité

Constat identique pour des essais menés avec des temps de pose de 100 ms et 400 ms !

Rappelons que la gamme de mesure est choisie selon la valeur du débit attendu ?!

INTERPRÉTATION (3)

Nous attribuons, comme précédemment, cette non proportionnalité aux facteurs influençant le calcul du débit de dose.

^(*) Mesures pour un temps de 1,25 s.

CONCLUSION

- Caractéristiques techniques du débitmètre/dosimètre AT1123 confirmées (gamme basse d'énergie et temps de réponse à court terme) ; caractéristiques jugées satisfaisantes pour le Radiodiagnostic (mesure de dose)
- Débits d'équivalents de dose calculés non systématiquement fiables (risque de se tromper de gamme de mesure, sans une prise en main assistée)
- <u>Solution</u> : limiter son usage, pour les installations de radiodiagnostic, à la mesure d'équivalents de dose : cohérence avec la révision actuelle des normes de conception de ces installations et de leur contrôle
- <u>Problématique</u>: temps de réponse de l'AT1123 (30 ms) limité, ne permettant pas de s'affranchir de l'inconnue « temps », lorsque seuls les mAs sont réglables (contrairement à la Babyline 81 en mode dose intégrée)
- Babyline 81, appareil de référence, plus que jamais d'actualité pour l'estimation de la dose au cristallin, à la peau (limites réglementaires) et l'exposition aux rayonnements faiblement pénétrants
- Finalement, deux dosimètres/débitmètres aux caractéristiques différentes mais complémentaires !

