4émes Journées SFRP sur l'optimisation de la radioprotection dans les domaines Électronucléaire, industriel et médical. La Rochelle 26&27 septembre 2006

Évaluer et prévenir le risque dans les opérations de radiographie industrielle

Didier PAUL, Mathieu PIZZORNO, Gonzague ABELA, Régine GSCHWIND Hélène PROVENS, Julien PLE, Irène SARI-MINODIER, François COLETTI

Plan

- Contexte
- Objectifs
- Travaux et résultats
- Conclusion

Programme de recherche - action

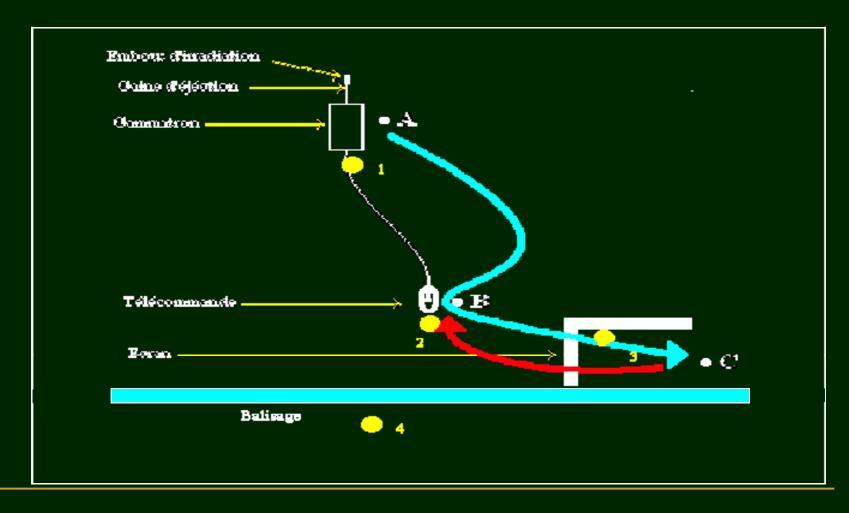
- 2 ans d'étude
- Une étude au niveau régional : DRTE-FP, DSNR Marseille, CRAM Sud-Est, entreprises, SFRP
- Un laboratoire de recherche EA 1784 (Université de la Méditerranée)
- Travaux en physique et biologie : Mesures et Dosimétrie, bio-monitoring
- 3 Étudiants : Guillaume Azzorpardi, Ozren Klémenic et Mathieu Pizzorno encadrés par F. Coletti et D. Paul (analyse du poste de travail du radiologue industriel)

Contexte

- La radiographie industrielle
 - Une technique de CND
 - Utilisation de rayonnements ionisants
 - □ Générateur X et Gammatron
 - Rappel de la réglementation (DGSNR)
- Une charte de bonnes pratiques, pourquoi ?

Objectifs

 Étude pour l'optimisation des doses reçues par les radiologues industriels

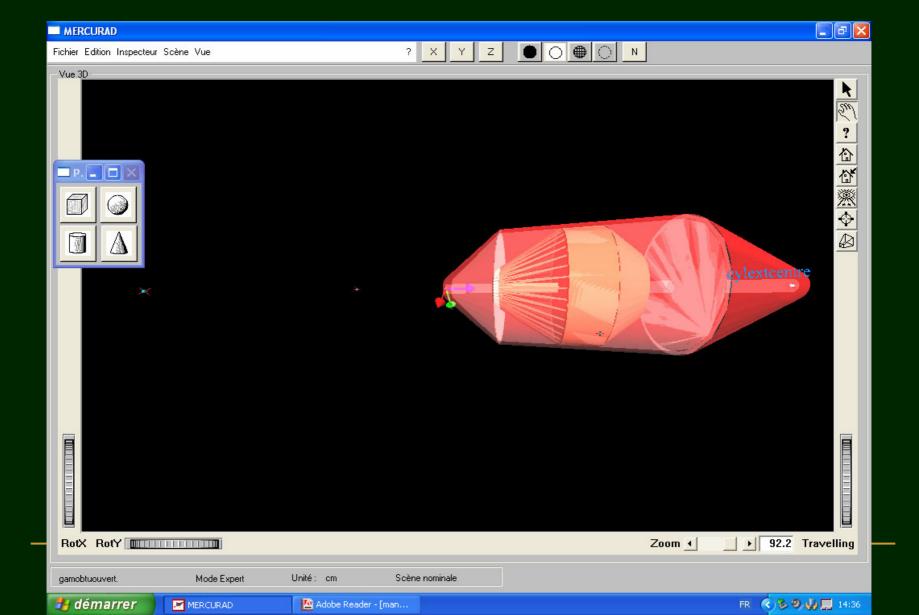

Conditions et organisation du travail

■ La charte de bonnes pratiques

L'optimisation

- Analyse de la dosimétrie
 - Protocole
 - Mesures
 - □ Résultat et Conclusion
- Modélisation
- Tableau de référence des doses
 - □ Transport en voiture
 - Manipulation du gammatron et du collimateur
 - Le tir
 - Éjection et rentrée de la source
 - Déplacement télécommande point de repli
 - Attente au point de repli
- Évaluation prévisionnelle des doses

Analyse de la dosimétrie Protocole de mesures


Analyse de la dosimétrie Tableaux de relevés

- 3 tableaux
 - Conditions et Généralités
 - Lieu du tir
 - Conditions de travail
 - Informations sur la source
 - Doses
 - Mesures d'équivalent de dose
 - Mesures de débit d'équivalent de dose
 - Temps

Analyse de la dosimétrie Résultat et Conclusion

 Les phases de transport, de manipulation du gammatron et du collimateur ne sont pas prises en compte pour le prévisionnel dosimétrique

Modélisation

Tableau de référence des doses

- Transport en voiture
- Manipulation du gammatron et du collimateur
- Le tir
 - □ Éjection et rentrée de la source
 - □ Déplacement télécommande point de repli
 - □ Attente au point de repli

Tableau de référence des doses

Source iridium de 1,85 TBq (50 Ci)

Etapes	Équivalent de Dose, ou débit, Corps entier	Débit d'Equivalent de Dose extrémités
Lors du transport en voiture	1,5 μSv/h	_
Lors de la manipulation du Gammatron	9,6 μSv/h	270 μSv/h
Lors de la manipulation du collimateur	2 μSv/h	10 μSv/h
Lors de l'éjection de la source	2µSv/tir	-
Au point de repli	5 μSv/h	-

Évaluation prévisionnelle des doses

■ <u>Tableur « évaluation prévisionnelle des doses »</u>

Tableur « distance de balisage »

■ <u>Tableur « gestion de la dosimétrie »</u>

Études complémentaires

La dosimétrie extrémité

■ Le sélénium

Dosimétrie extrémité

Objectif

□ Analyser et quantifier les doses reçues par les radiologues au niveau des mains.

Méthode

■ Étude comparative

Dosimétrie extrémité

■ Résultats et conclusion

- La dosimétrie extrémité est 7 fois plus importante à la dose corps entier
- Plusieurs mesures seront réalisées pour valider le coefficient
- Interrogation sur la mise en place d'un suivi de la dosimétrie extrémité des radiologues industriels

Le Sélénium

Objectifs

■ Simuler l'utilisation du sélénium avec le Gammatron 80 en lieu et place de l'iridium

 Calculer le débit d'équivalent de doses au contact du gammatron

Comparer

Le Sélénium

Résultat

■ Un débit d'équivalent de dose beaucoup plus faible au contact du Gam

Conclusion

- Les doses reçues lors de la manipulation du gammatron seraient très largement inférieures
- Changement possible de matériau pour la protection biologique et pour le collimateur.

La charte de bonnes pratiques

- Objectif
- Organisation
- Travaux
- Résultat

Conclusion

- Un étude a été lancée pour réaliser une charte nationale
- Un groupe de travail sur la dosimétrie et des Assises de la Prévention
- Une publication dans « Radioprotection »
- Remerciements