



## ZONAGE ET ETUDE DE POSTE EN CARDIOLOGIE INTERVENTIONNELLE

J-P Degrange

RP-CONSULT, Paris - France jp.degrange@rp-consult.fr

Les techniques interventionnelles en médecine et radioprotection SFRP – GACI Paris, 13 Octobre 2009





### **CONTEXTE ET OBJECTIFS**

#### CONTEXTE

- Les pratiques de cardiologie interventionnelle (C.I.) peuvent conduire à des doses élevées pour les patients et les personnels [CIPR 85, 2001]
- La délimitation des zones réglementées (zonage) et l'étude (dosimétrique) des postes de travail revêtent donc une importance particulière dans ce domaine

#### OBJECTIFS

- Présenter en termes de méthodes et outils les étapes à parcourir pour le zonage et l'étude de postes
- Souligner les problèmes spécifiques et les solutions adaptées





## ZONAGE(1) OBJECTIF ET METHODE GENERALE

- OBJECTIF
  - Identification du danger d'exposition dans les lieux de travail
- METHODE GENERALE
  - Critères de débit de dose moyen (1 mois ou 1 heure) ou instantané [Arrêté 15 mai 2006, Circulaire 18 janvier 2008]
  - Prise en compte des Equipements de Protection Collective fixe





## ZONAGE(2) OBJECTIF ET METHODE GENERALE

- ETAPES
  - Identification des emplacements de mesure
  - Identification des incidences/réglages du tube RX
  - Mesure des débits de dose (scopie et graphie)
  - Recueil des données d'activité maximale réaliste pour chaque incidence/réglage sur la période de référence (1 mois/1 heure)





# ZONAGE(3) PARTICULARITES DE LA C.I.

- Ensemble important d'incidences radiographiques (procédures diagnostiques / thérapeutiques)
- Variation très significative du débit de dose avec l'incidence (PA << OAG 90)</li>



- Variation importante du débit de dose avec la collimation du faisceau et les modalités de réglage
- Rayons X pulsés avec une très forte variation spatiale d'intensité (à proximité du patient : 20 mSv/h, derrière le pupitre : 20 µSv/h)





## ZONAGE(4)

- Recueil de données : modalités de réglage (kV, mA, cadence, durée de pulse,...) effectivement utilisées
- Recueil de données : incidences utilisées, le nombre d'images et le temps de scopie par examen Données d'incidence difficiles d'accès (champs DICOM propriétaires) et limitées à la graphie
- Utilisation de radiamètres adaptés (grandeur H\*(10), champs pulsés, énergie, saturation, sensibilité, à distance)
   La réponse en champs pulsés et la courbe de saturation des instruments est rarement documentée
- Estimation réaliste : pas de sous-protection ni de banalisation





### ZONAGE(5)

- UNE SALLE DE C. I. COMPORTERA PLUSIEURS (SOUS-)ZONES
  - Zone rouge (50 cm): accès interdit
  - Zone orange (350 cm) : accès réservé CDI ; traçage des E/S
  - Zone contrôlée
  - Zone surveillée
  - Un tel zonage (réaliste) permet au personnel de mieux différentier le potentiel d'irradiation des différents emplacements
  - Le découpage en sous-zones doit faire l'objet d'un





### ZONAGE(6)

- LE ZONAGE SERA INTERMITTENT
  - Emission des RX : Zonage déterminé ci-dessus
  - Haute-tension allumée sans RX : Zone surveillée
  - Haute-tension éteinte : Zone publique
  - Le zonage intermittent permet de limiter les contraintes d'accès (restrictions, dosimétrie opérationnelle, formation,...) en l'absence d'émission des RX
  - Les entrées de salle doivent être équipées d'un signal lumineux à trois états
  - Les règles d'accès des zones rouges et oranges sont-elles





# ETUDE DE POSTE(1) OBJECTIF ET METHODE GENERALE

- OBJECTIFS
  - Evaluation prévisionnelle de la dosimétrie annuelle pouvant être reçue par les personnels
- METHODE GENERALE
  - Prise en compte de toutes les protections : Collective (EPC) fixe et mobile, et Individuelle (EPI)





# ETUDE DE POSTE(2) OBJECTIF ET METHODE GENERALE

- ETAPES
  - Identification des points de mesure (lieux de présence)
  - Identification des incidences/réglages du tube RX
  - Mesure des débits de dose (scopie et graphie) avec EPC et EPI
  - Recueil des données d'activité annuelle réaliste pour chaque incidence /réglage
  - Recueil du nombre et du temps de présence des personnels





# ETUDE DE POSTE(3) PARTICULARITES DE LA C.I.

- La cardiologie interventionnelle peut être associée à de forts enjeux dosimétriques annuels L'étude de poste doit donc constituer la première étape de l'optimisation de la radioprotection des personnels
- Utilisation variable (d'une étape à l'autre de la procédure, d'une personne à l'autre) des EPI, EPC mobiles et de l'éloignement. L'étude de poste doit donc faire l'objet d'une analyse de sensibilité





## ETUDE DE POSTE(4)

- Prise en compte des incidences, des modalités de réglage et des niveaux de débit de dose : idem zonage
- Pour constituer la première étape de l'optimisation de la radioprotection, l'étude de poste doit être réaliste
- Elle doit être aussi analytique, pour permettre :
  - d'identifier les personnels les plus exposés
  - d'établir la contribution à l'exposition des diverses situations (graphie, scopie, position,...)
  - de quantifier le gain dosimétrique apporté par les bonnes pratiques : protection par les EPI (tablier, cache-thyroïde, lunettes) et les EPC mobiles (écran suspendu, paravent mobile), éloignement du





## Facteur d'atténuation cumulé apporté par les protections

| Protection        | Epaisseur<br>de plomb<br>(mm) | Facteur<br>d'atténuation<br>(80 kV) | Facteur<br>d'atténuation<br>(125 kV) |
|-------------------|-------------------------------|-------------------------------------|--------------------------------------|
| Sans protection   |                               | 1                                   | 1                                    |
| + Tablier plombé  | 0,5                           | 17                                  | 8,1                                  |
| + Ecran suspendu  | 0,5                           | 53                                  | 29                                   |
| + Paravent mobile | 2                             | 2 300                               | 1 400                                |





# ETUDE DE POSTE(5) METHODES ET OUTILS ADAPTES A LA C.I.

- Effectuer une évaluation prévisionnelle réaliste pour le comportement le plus probable du personnel
  - Une évaluation simplifiée en incidence PA sousestimerait largement les expositions
  - Une évaluation simplifiée en incidence OAG90 surestimerait les expositions d'un facteur 2 en coronarographie et 3 en angioplastie







- Effectuer une analyse de sensibilité pour quantifier l'importance de la véracité des hypothèses retenues
  - Un anesthésiste porteur d'EPI (mais sans EPC) présent 5mn/h de procédure, sans s'éloigner en scopie et graphie reçoit 70/50% de la dose du cardiologue (protégé au maximum) en coronarographie /angioplastie
  - Cet anesthésiste recevrait une dose bien supérieure à celle du cardiologue s'il ne portait pas de tablier
- Effectuer une analyse des principales contributions pour identifier d'éventuelles actions de radioprotection



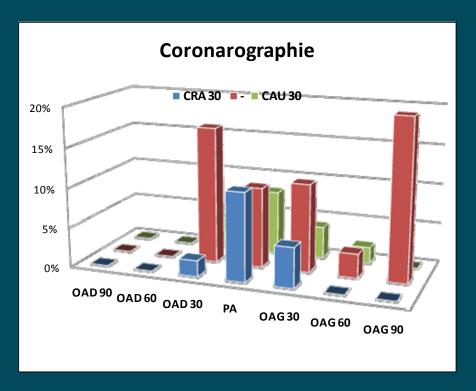


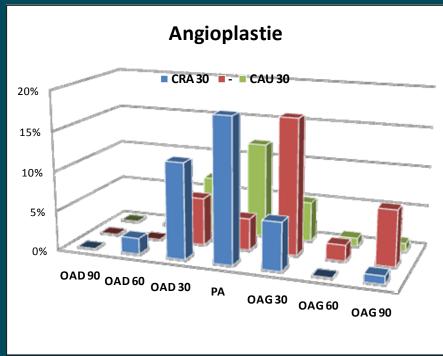
### CONCLUSION (1)

- Les pratiques de cardiologie interventionnelle (C.I.) peuvent conduire à des doses élevées pour les personnels
- Elles nécessitent donc une approche aussi réaliste que possible dans le zonage et l'étude des postes de travail






### CONCLUSION (2)

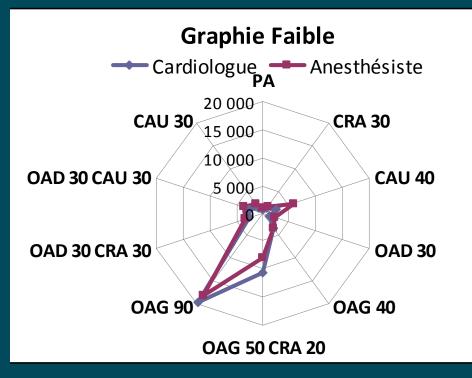

- Les points-clés de ces études sont :
  - La détermination d'une distribution réaliste des incidences utilisées lors des procédures
  - L'identification des modalités de réglage du faisceau
  - L'utilisation d'instruments de mesure adaptés
  - L'identification des moyens de protection utilisés par les personnels (EPI, EPC, éloignement)
  - Une analyse de sensibilité / hypothèses retenues
  - Une analyse des principales contributions pour identifier d'éventuelles actions de radioprotection

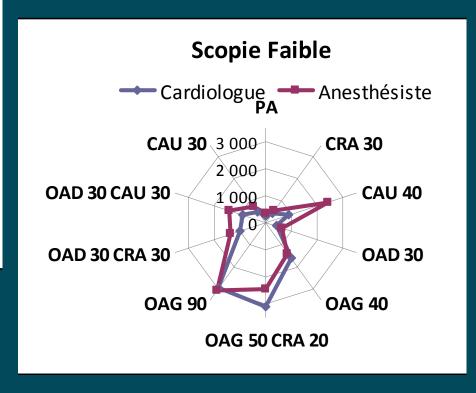




## Contribution des incidences au nombre d'images de Graphie (%)





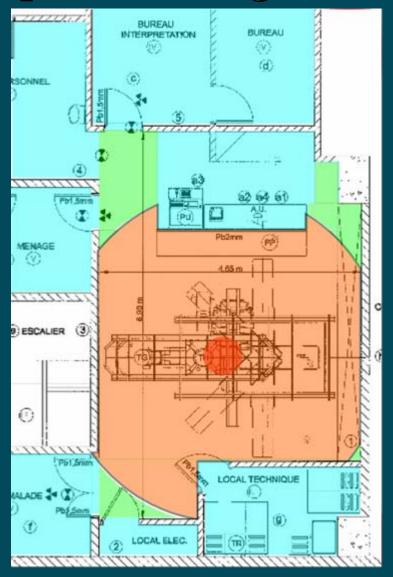








### Variation du débit de dose avec l'incidence (µSv/h)












## Exemple de zonage d'une salle



