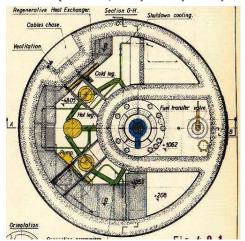
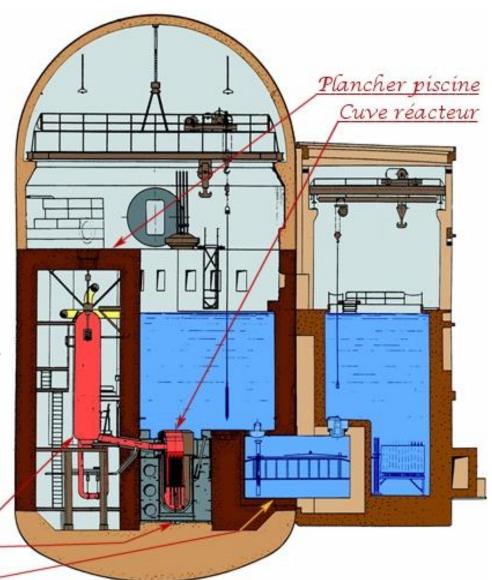


BR3 – Un démantèlement complexe le Neutron Shield Tank (NST) en télé-opération et vision indirecte

SCK•CEN – Luc Denissen TRACTEBEL – Henri Davain


Table des matières

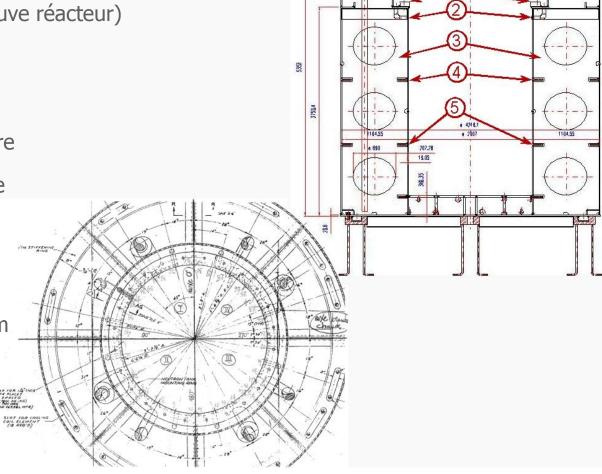
- Cadre des activités de démantèlement
 - Présentation du bâtiment réacteur du BR3
 - Présentation du Neutron Shield Tank (NST)
- Système de coupe (outil, porteur et structure support)
 - Description du matériel
 - Utilisation du bras MAESTRO avant l'intervention dans le NST
- Description des phases de démantèlement du NST
 - Plans de coupe et séquences d'opérations
 - Moyens d'extraction et de stockage des pièces découpées
 - Méthode de travail



Présentation du BR3

- Type PWR 10.5 MW_e (1962-1987)
- Le bâtiment réacteur (plant container)
 - Le plancher piscine (Operating Deck)
 - La piscine avec le réacteur supporté par le Neutron Shield Tank & le tube de transfert
 - L'espace sous Operating Deck avec 2 boucles (1 GV, 2 pompes primaires, pressuriseur, ...)

Générateur de vapeur Neutron Shield Tank Réservoir de transfert

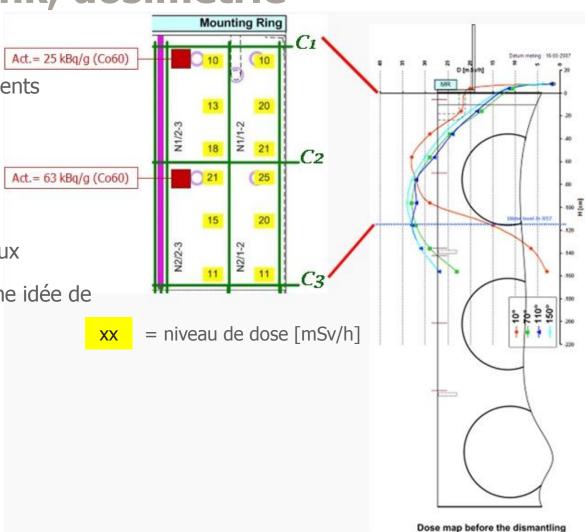


Présentation du Neutron Shield Tank (NST)

- Quelques composants remarquables
 - ① le Mounting Ring (ancrage de la jupe support cuve réacteur)
 - ② les tuyaux d'évent 2"
 - 3 les nervures radiales
 - 4 la nervure circulaire supérieure
 - ⑤ la nervure circulaire inférieure
- Quelques dimensions ...
 - diamètre hors tout = 4.2 m
 - diamètre du puits de cuve = 2 m
 - hauteur = 5.3 m
 - épaisseurs = 20/25/50 mm

Neutron Shield Tank, dosimétrie

Avant de commencer


- Relevés effectués en 4 emplacements du haut vers le bas.

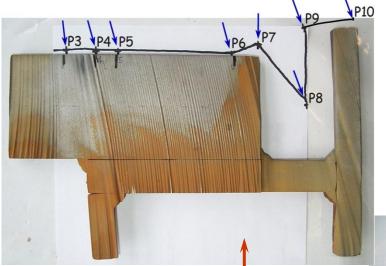
- Max. 35 mSv/h

Pendant la phase 1

- Des mesures de dose sur 3 niveaux

- Prise d'échantillons afin d'avoir une idée de l'activité

Le système de coupe

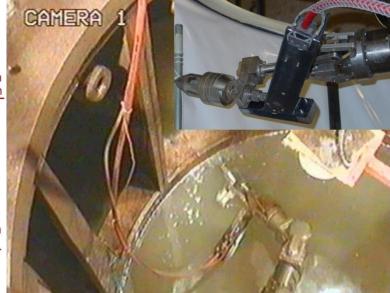

- Le procédé de coupe (AQUARESE)
 - l'outil proprement dit
 - la pompe à très haute pression (3800 bars)
 - le système d'alimentation en abrasif (SAM)
- Le porteur 6 axes (Cybernetix)
 - le bras MAESTRO
 - le contrôle-commande (PC TREL et PC interface)
 - le groupe hydraulique (160 bars)

En salle des machines ... Essais à froid sur différentes maquettes

① mounting ring

② dry box (2 plats à 90°)

Le système de coupe, adaptation de l'outil AWJ


Flexible d'alimentation en eau haute pression

Pince de prise outil (bras MAESTRO)

Capteur de collision

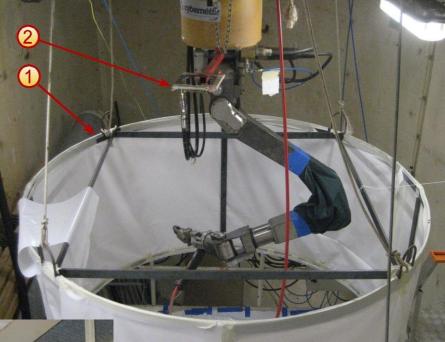
Flexible d'alimentation en abrasif

Pare-chocs de protection du canon

- ② interposition de ≠ coudes
- ③ déplacement de la prise outil ⊕ rallonge

Avant le démantèlement du NST

- Le bras MAESTRO sur sa potence support
 - coupe du dôme du GV (coupes de révolution)
 - coupe du 2^e anneau du fond bombé de la cuve


Le système de coupe

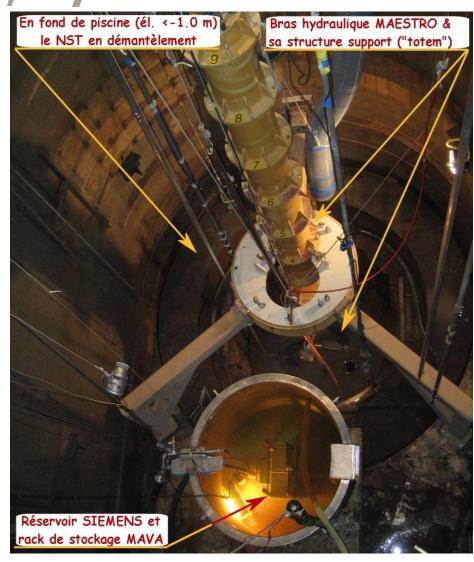
- Le bras MAESTRO fixé en partie inférieure du mât (totem)
 - ① mock-up du NST (essais "tièdes")
 - ② support pivotant de la caméra "totem" (commande reportée au niveau O.D.)

Essai de protection d'une articulation

du bras MAESTRO

Démantèlement du NST, layout du chantier en fond de piscine

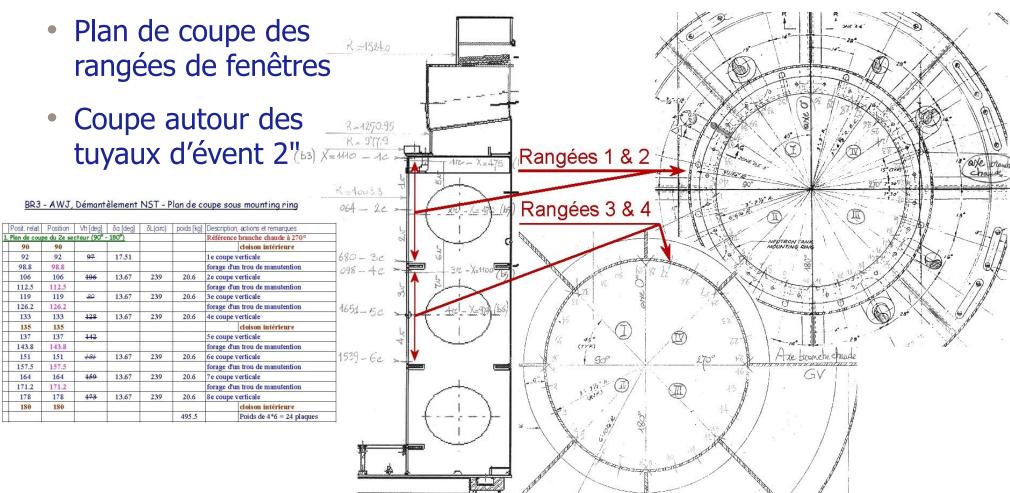
Le supportage du bras MAESTRO


- le trépied et la plaque de base
- le totem et le bras MAESTRO
- la vanne de coupure et le flexible HP

Le réservoir SIEMENS

- le rack de déchets MAVA immergé
- la filtration de l'eau

Le confinement de la zone


- la gaine de ventilation

Démantèlement du NST, phase 1 Ouverture des "fenêtres"

Démantèlement du NST, phase 1 **Ouverture des "fenêtres"**

• Réalisation des découpes des rangées de fenêtres

Démantèlement du NST, phase 1 Moyens d'extraction & de manutention

Ouverture des fenêtres

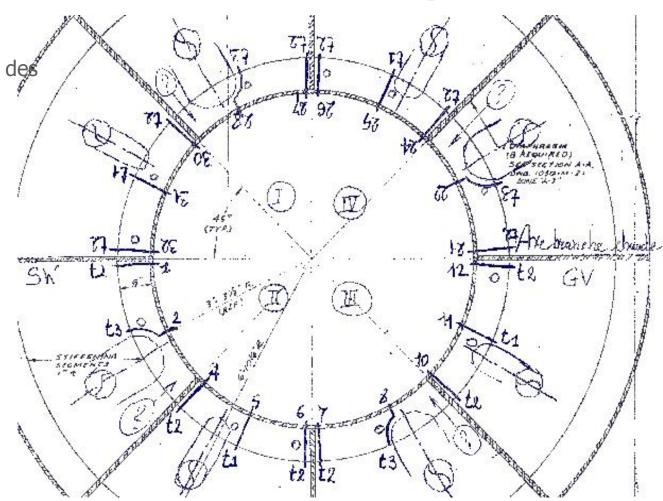
- Perçage des trous de manutention

- Mise en place des crochets d'extraction à l'aide du bras **MAESTRO**

Démantèlement du NST, rack de stockage MAVA

- Traitement des pièces coupées (paroi intérieure NST et nervures radiales)
 - ① principe de structure des racks utilisés pour la cuve réacteur (récupération du palonnier manutention)
 - ② stockage des racks dans un fût de 400 l

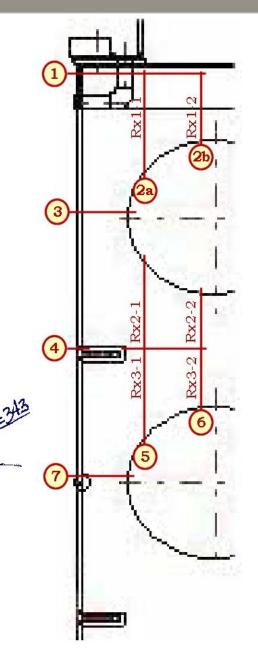
- 3 stockage vertical des plats & réduction du nombre de coupes



Démantèlement du NST, phase 2 Découpe de la nervure circulaire supérieure

• Plan de coupe

- Secteurs de ~22.5° avec des pièces de 450×248 mm



Démantèlement du NST, phase 2 Découpe des nervures radiales

 Plan de coupe des différentes rangées

- même canevas de principe que la phase 1 avec des pièces de 550×250×19/25 mm

Démantèlement du NST, phase 2 Moyens d'extraction & de manutention

- Découpe des nervures radiales
 - Perçage des trous de manutention
 - Mise en place des crochets à l'aide du bras MAESTRO

Démantèlement du NST, phase 2 Moyens d'extraction & de manutention

• Découpe des sections de nervure circulaire

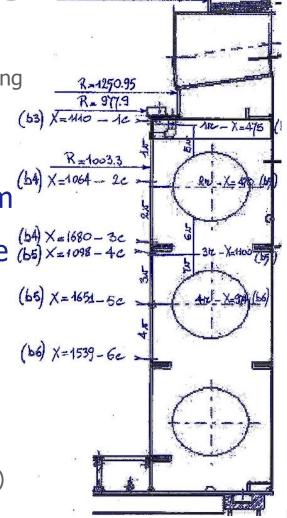
- ① Evacuation des pièces à l'aide d'un aimant à commande pneumatique et du bras MAESTRO

- ② Fourche ... à purin

CAMERA 2

Démantèlement du NST Adaptations du rack MAVA

- Traitement des pièces coupées (nervure circulaire et tuyaux d'évent 2")
 - ① adaptation d'un rack avec un compartiment fermé pour les sections de nervure circulaire
 - ② plateau de stockage posé sur le compartiment pour les sections de tuyau 2"



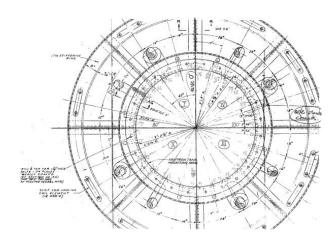
Démantèlement du NST, principe de construction des scénarii de coupe

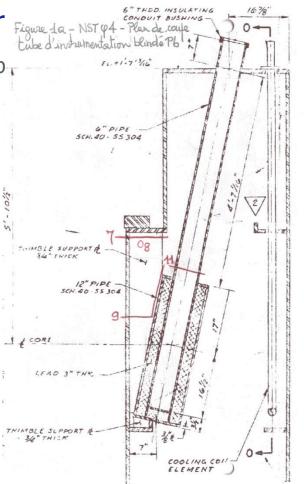
- ① Modélisation du NST à partir des plans
 - origine = intersection axe symétrie dans le plan de pose du Mounting Ring
 - coordonnées cylindriques des points caractéristiques
- ② Modélisation en fonction de la position du totem
- 3 Essais "tièdes", nouvelle orientation du système (b) x=1098 4c
 - détermination des zones accessibles pour le bras
 - localisation des singularités
- ④ Pour chaque scénario de coupe
 - détermination de la position associée du totem
 - ensemble des points (coordonnées) et vecteurs outil (angles Euler)

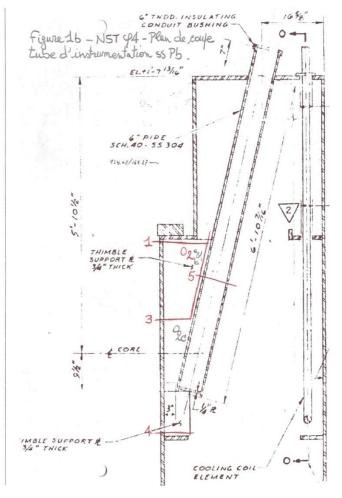
R =1524.0

Démantèlement du NST, mesure des écarts et adaptation des scénarii de coupe

- Scénario théorique sur base des plans
- ② Mesure des écarts ε sur R, α et d
 - correction sur la position radiale : $R=R_0+\varepsilon(R)$
 - correction sur la position angulaire : $\alpha = \alpha_0 + \varepsilon(\alpha)$
 - correction sur la largeur du 'té' : $d=d_0+\varepsilon(d)$
- 3 Corrections des tableaux de coordonnées
- Paramètres cylindriques pour le réglage fin
 - correction sur la position radiale : $R+\delta(R)$
 - correction suivant la direction tangente : $t+\delta(t)$

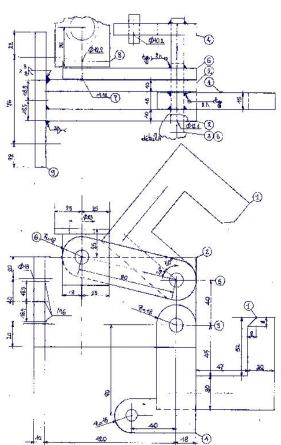



Démantèlement du NST, phase 4 Découpe des tubes d'instrumentation


Composants à couper

- 4 tubes d'instr. blindé au Pb

- 4 tubes d'instr. sans Pb
- 4 nervures radiales situées entre les tubes d'instr.
- secteurs de nervures circ.



Démantèlement du NST, phase 4 Moyens d'extraction & de manutention

- Découpe des tubes d'instrumentation
 - ① Outil d'extraction des tubes (~700 daN) équipé d'une pince à commande pneumatique
 - ② Stand intermédiaire de découpe dans le puits de cuve (supportage de l'outil d'extraction)

Démantèlement du NST, phase 4 Découpe des tubes d'instrumentation

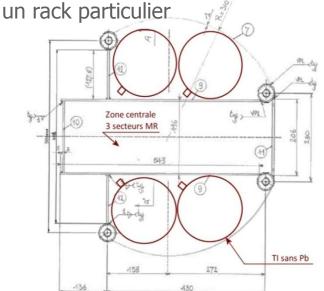
4 Tubes d'Instrumentation sans Pb

- Construction de la trajectoire, simulation et

contrôle des interférences.

- Accostage et saisie de la nervure du tube.

- Exécution de la coupe.
- Evacuation du système de coupe
- Evacuation de la pièce coupée.


Démantèlement du NST, phase 4bis Stockage des 8 tubes d'instrumentation

4 Tubes d'Instrumentation sans Pb

- stockés immergés dans le réservoir BUDE (MAVA)

- repris tels quels (nervure de renforcement déjà coupée)

- stockage des tubes d'instr. regroupés dans

Démantèlement du NST, phase 4bis Stockage des 8 tubes d'instrumentation

- 4 Tubes d'Instrumentation blindés
 - stockés immergés dans le puits de cuve (MAVA)
 - à recouper (hauteur fût 400 l < longueur partie blindé TI)
 - regrouper 4 parties supérieures (rondelles) dans 1 rack particulier \rightarrow 1 fût 400 l
 - stocker 4 parties inférieures dans 4 racks particuliers \rightarrow 4 fûts 400 l Partie supérieure tube d'instr.

Démantèlement du NST, phase 4bis Recoupe des 4 tubes d'instr. blindés

Système de coupe AWJ

- Bras hydraulique MAESTRO hors service (2ième PC [TREL] impossible à réinitialiser)

- Mise en oeuvre d'une structure motorisée fixée sur la structure-

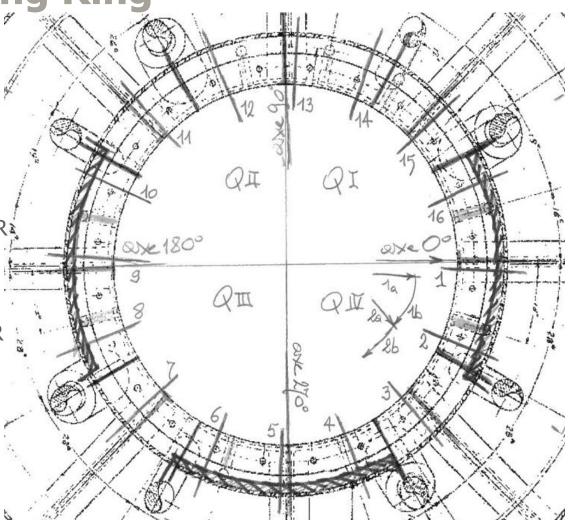
plateforme

- structure-plateforme @3
- berceau de basculement
- cadre porte-outil AWJ motorisé
- rail linéaire HEPCO + DANFOSS

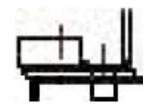
Motorisation du cadre porte-outil AWJ Rail HEPCO DLS4 + moteur DANFOSS

Berceau de basculement du TI blindé

Structure-plateforme NST (phase 3)



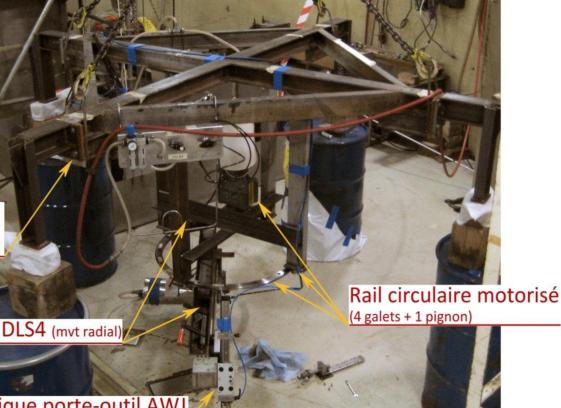
 16 secteurs de ~22.5° avec des pièces de 480×255×150 mm, d'un poids < 120 kg


Séquence d'opérations

- coupe circonférentielle derrière le MR

- supportage du secteur MR en cours (outil d'extraction phase 4 adapté)
- coupe radiale à droite du secteur MR

Démantèlement du NST, phase 5 Découpe du Mounting Ring


- Système de coupe AWJ
 - Mise en oeuvre d'une structure motorisée fixée sur la structure-plateforme de base
 - structure-plateforme φ3
 - 4 colonnes raidies supportant 4 galets
 - rail linéaire DLS4
 - rail pneumatique porte-outil AWJ incliné à 25°

Structure-plateforme NST(phase 3)

Rail linéaire motorisé DLS4 (mvt radial)

Rail linéaire pneumatique porte-outil AWJ

Démantèlement du NST en télé-opération Quelques réflexions

- Maîtrise des composants
 - Procédé de coupe (consignes, précision, dépouille, spécificités, ...)
 - Porteur (vue dans l'espace, adaptation matrices outil, spécificités, ...)
- ② Télé-opération ↔ trajectoires calculées
 - Télé-opération : prise outil , placement des crochets, assistance "virtuosité"
 - Trajectoires de coupe : scénarii paramétrés, calcul des écarts, répétitivité
- 3 Bras MAESTRO, un engin sophistiqué, pannes complexes
 - Connaissance des éléments mécaniques, électriques, électroniques, informatiques, ...
- Mécessité d'un matériel si sophistiqué ?!