

METHODOLOGIE POUR LE CHOIX DE NOUVEAUX DOSIMETRES NEUTRON

Yves GUIBBAUD, expert, DPN GPRE

Javaraly FAZILEABASSE, expert, R&D

Hervé ONILLON, ingénieur, R&D

Plan de la présentation

- 1. Suivi de la dosimétrie neutron à EDF
- 2. Les raisons du choix de nouveaux dosimètres neutron
- 3. Méthodologie mise en œuvre par EDF choisir ses nouveaux dosimètres neutron
- 4. Les essais réalisés sur les dosimètres neutron

Suivi de la dosimétrie neutron à EDF

Avant 2004, Dosimétrie neutron = dosimétrie complémentaire

un seul appareil de mesure était donc utilisé pour estimer la dosimétrie individuelle

Dosimètre à bulles (activités combustible)
 OU

Radiamètre DINEUTRON en mode intégration

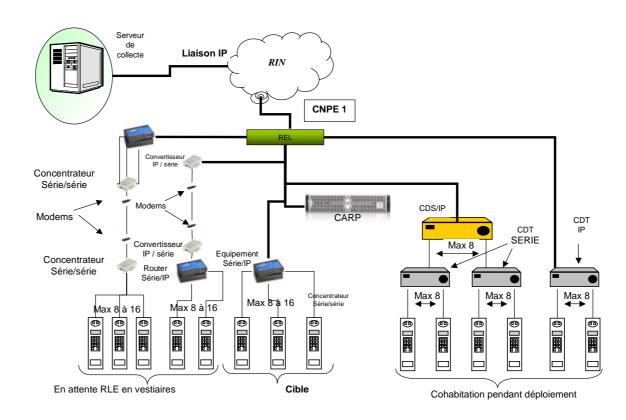
La dose unique était ensuite :

<u>Pour les salariés d'EDF</u> : enregistrée dans l'application DOSINAT (dosimétrie active) + enregistrée dans l'application DOSIREG (dosimétrie passive)

Pour les salariés d'EE: envoyée au médecin du travail du salarié

Pourquoi choisir d'autres dosimètres neutron?

Evolution de la réglementation : arrêté du 30 décembre 2004


- La dosimétrie neutron n'est plus une dosimétrie complémentaire, elle devient une dosimétrie à part entière au même titre que la dosimétrie gamma,
- la dosimétrie passive doit être mise en œuvre par un organisme agréé
- Les dosimètres opérationnels doivent posséder des alarmes en DeD et en ED

Pourquoi choisir d'autres dosimètres neutron?

Volonté d'EDF de mettre à disposition des CNPE un véritable système de dosimétrie opérationnelle neutron à l'image de celui en place pour la dosimétrie opérationnelle gamma

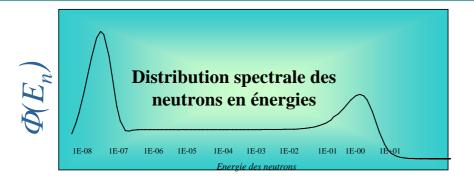
Méthodologie pour le choix des matériels

1. Caractériser les situations de travail où le port de dosimètres sera nécessaire :

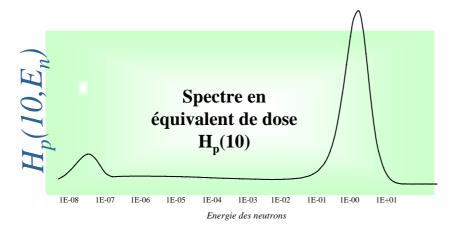
Evaluer, dans les conditions normales de travail, les doses susceptibles d'être délivrées au personnel de manière à pouvoir matérialiser le risque radiologique associé aux situations de travail et en déduire le type de dosimètres à mettre en œuvre (passif ou passif + opérationnel)

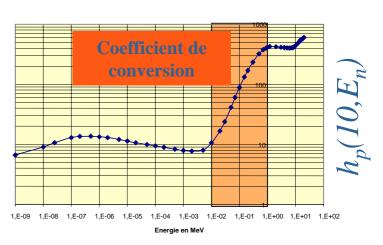
- Définir les caractéristiques du milieu environnant dans lequel on va utiliser les dosimètres (température, émission d'ondes électromagnétiques, pression, humidité, débit de dose gamma)
- 2. Définir les besoins associés à la collecte de la dose :
 - Dosimétrie passive : disposer des résultats sur format papier ou informatique
 - Dosimétrie opérationnelle : simple relevé manuel des doses ou relevé automatique via un système informatique
- 3. Réaliser un état de l'art des matériels disponibles susceptibles de répondre au besoin
- Définir les exigences techniques permettant de prendre en compte l'ensemble des exigences (exigence sur les dosimètres, exigences sur le mode de collecte des doses)
- 5. Tester les matériels proposés

Essais réalisés par EDF sur les matériels

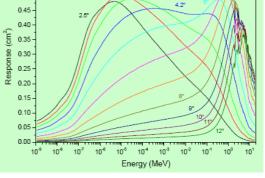

Essais réalisés par EDF sur les matériels

Pour tenir compte des conditions réelles d'utilisation, certaines exigences de la norme NF EN 61526 ont été adaptées


	Dose individuelle moyenne	Risque mécanique	ЕМ
Evacuation combustible MOX	10 - 400 microSv	chutes des	téléphone
Evacuation combustible UO2	10 - 150 microSv	dosimètres de la poche de la	DECT et GSM
Réception combustible MOX	10 - 100 microSv	combinaison sur	appareil à arc
Accès BR	1 - 20 micro Sv	un sol en béton	électrique


Essais : performance de la mesure

Pour évaluer le plus précisément possible une dose neutron, nécessité de connaître le spectre



Essais : performance de la mesure

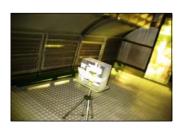
La valeur de référence choisie : la mesure H*(10) donnée à 5% près par le système multi-sphères de BONNER.

Essais : performance de la mesure

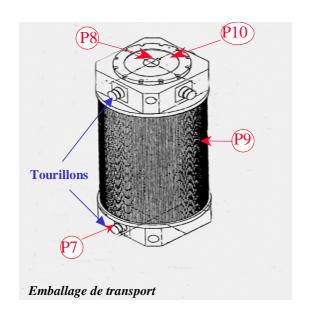
Arrivée MOX

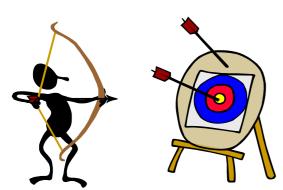
Evacuation UO2

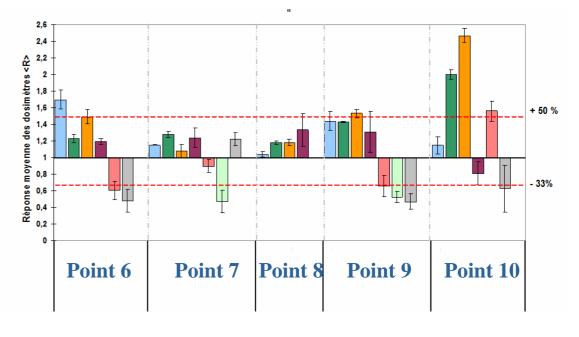
Mesures de référence avec un système multi-sphères


Exposition des dosimètres opérationnels du lot « II »

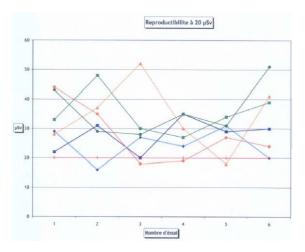
Exposition des dosimètres opérationnels du lot « III »

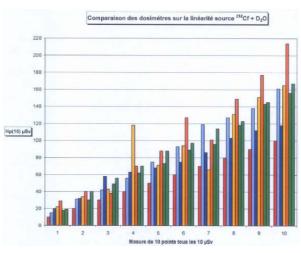

Exposition des dosimètres passifs





Essais : Performance de la mesure des dosimètres passifs et opérationnels





Essais : Performance de la mesure des dosimètres opérationnels

D'autres essais ont été réalisés dans le laboratoire de l'IRSN à Cadarache sur les dosimètres opérationnels :

- Essais de linéarité
- Essais de répétabilité
- Essais de déclenchement des alarmes sonores

Essais : Sensibilité des dosimètres opérationnels aux facteurs d'influence

Des essais sur CNPE ont permis d'évaluer l'influence du rayonnement gamma sur la mesure neutron :

- Exposition flash
- Exposition prolongée

Tableau 8 : Expositions sur source gamma

Durée (s)	Dosimètre 1 (μSv)	Dosimètre 2 (μSv)	Dosimètre 3 (μSv)	
15	1	0	0	
30	2	0	2	

Tableau 9: Expositions sur point chaud : premier test

Date	Heure	(1) Dosimètre 1	1		γ	Taux de réjection gamma (%)		
		(μSv)		(μSv)	(1)	(2)	(3)	
12/06/07	15h35	0	0	0	4	/	1	/
12/06/07	16h38	2	0	0	173	/	/	/
13/06/07	11h50	187	42	3	3269	94	99	> 99

Essais : Sensibilité des dosimètres opérationnels aux facteurs d'influence

Des essais en laboratoire ont permis d'évaluer les effets de perturbations électromagnétiques :

- Immunité aux champs rayonnés
 - 50 V/m de 80 MHz à 100 MHz
 - 100 V/m de 100 MHz à 3 GHz
 - En modulation par impulsion à 180 V/m (433 à 435 MHz + 865 à 960 MHz + 1,7 à 2.5 GHz
- Immunité aux décharges électrostatiques
 - 10 décharges dans l'air à ± 8, 15 et 30 kV
 - 10 décharges au contact à ± 8 kV
- Immunité au champ magnétique à la fréquence du réseau
 - 6 min à 100 A/m

Essais : Sensibilité des dosimètres opérationnels aux facteurs d'influence

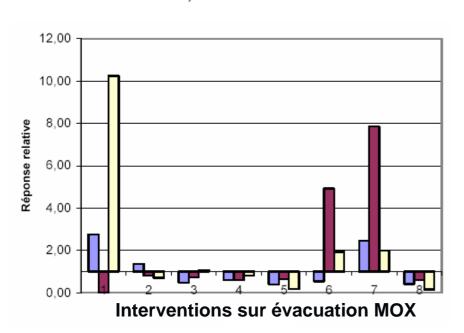
Des essais réalisés dans les laboratoires d'EDF R&D ont permis d'évaluer l'influence :

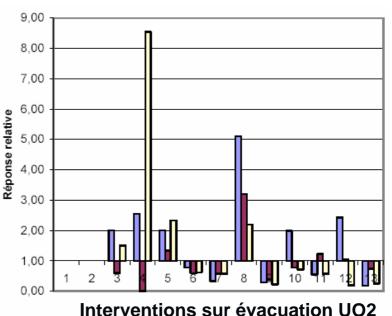
De petits chocs (microphonie)
 60 chocs par dosimètre

		Avant (μSv)	Arrière (μSv)	Latéral droit (μSv)	Latéral gauche (µSv)	Inférieur (µSv)	Supérieur (μSv)	Total dose (µSv)
Ī	1 ^{er} choc	0	0	0	4	4	8	23*
	2 ^{eme} choc	0	0	4	4	4	23	

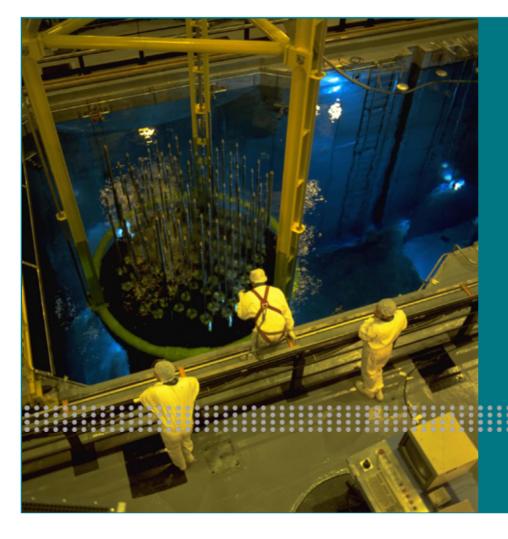
De chute de hauteur (1,10 m)
6 paires de chutes (2 par face) par dosimètre

Avant	Arrière (μSν)	Latéral droit (µSv)	Latéral gauche	Inférieur (µSv)	Supérieur (µSv)	Total dose (µSv)	
0	0	2	2	2	2	2	
2	2	3	3	3	3	3	





Essais : Port des dosimètres en situation de travail


Les opérateurs ont porté pendant leur activité les dosimètres opérationnels. 2 points ont pu être appréciés :

- L'ergonomie de port (gêne, lisibilité des informations)
- Ecart entre la dose affichée par l'ancien dosimètre (le dosimètre à bulles) et ceux testés

MERCI

Emmanuel GRUDE, ingénieur, DPN GPRE Yves GUIBBAUD, expert, DPN GPRE Javaraly FAZILEABASSE, expert, R&D Hervé ONILLON, ingénieur, R&D