

Démantèlement INB 43-48 (accélérateurs)

Zonage et Filières Déchets

Sûreté de l'Etat Final

Extension aux Réacteurs (INB 44)

DSM/IRFU/SENAC

18-19 Février 2008

Caractéristiques des accélérateurs

- Accélérateur Linéaire de Saclay (INB 43)
 - électrons, 700 MeV
 - Synchrotron Saturne (INB 48) ions, 3 GeV (protons)
- ➔ absence de contamination
- ➔ plusieurs types d'activation
- → masse (4.10⁴ t)- volume (3.10⁴ m³)- objets(2.10⁴)
- → surfaces INB (4.10⁴ m²)

Création d'une entité spécifique :

Service de Déclassement des Accélérateurs

Déchets nucléaires ou conventionnels? Valorisation?

QUELS DEVOIRS ?

Respect

ASN + Expertise IRSN
Application circulaires et guides N° SD3 - DEM - 01

N° SD3 - DEM - 01 N° SD3 - DEM - 02 DGSNR SD3-D-01 (arrêté 31/12/99)

Clients

Respect Articles Décret MAD/DEM

□ Respect Prescriptions Techniques, RSGE, Etudes déchets...

Dossiers de demande « autorisation spécifique »

> ANDRA

Autorités

Obtention agréments colis FA, certifications colis TFA

□ Respect produit fini

MAITRISE D 'OUVRAGE

□ Contrat d 'objectifs

□ Revue de projet (Jalons techniques et financiers)

QUELS DROITS ?

Zonage de référence des déchets

>DEMARCHE ANALYTIQUE

- Conception des installations
- Règles de fonctionnement
- Historique

>NORMALISATION DE METHODES

- INB 43: linéaire
 - électrons, 700 MeV
- INB 48: anneaux synchrotrons
 - protons ions, 3 GeV
- Extension aux REACTEURS (activation)?

Méthodologie Zonage

Vérification état radiologique des zones
 Cartographies (débits de dose absorbée...) - vrai ?
 Mesures sur échantillons en laboratoires

détectable ?

- Établissement fonctions de transfert
- > Contrôle, tri et gestion des déchets

Radionucléides susceptibles d'être présents dans les matériaux de SATURNE

	Nom de	Période	Réaction	Nom de	Pourcentage	Section	Туре
	l'élément final	Radioactive $T_{1/2}$	probable	l'élément initial	isotopique (α_i)	efficace max. (barn)	de matériau
	²² ₁₁ Na	2,602 a	(n,2p4n)	²⁷ ₁₃ Al	100	10.10 ⁻³	aluminium, béton ordinaire
	••	"	(n,2n)	²³ ₁₁ Na	100	40.10 ⁻³	béton
œ	⁵⁴ ₂₅ Mn	312,20 j	(n,p)	⁵⁴ ₂₆ Fe	5,8	0,588	fer, aluminium, acier inoxydable, cuivre, béton riblonné
	**	**	(n,2n)	⁵⁵ ₂₅ Mn	100	0,910	fer, aluminium, acier inoxydable, cuivre
	⁵⁷ ₂₇ Co*	271,77 ј	(n,2n)	⁵⁸ ₂₈ Ni	68,077	0,082	acier inoxydable, cuivre
	⁵⁵ ₂₆ Fe	2,73 a	(n,γ)	⁵⁴ ₂₆ Fe	5,8(1)	$2,25 \pm 0,18$	fer, aluminium, acier inoxydable, cuivre, béton riblonné
	**	**	(n,α)	⁵⁸ ₂₈ Ni	68,077	0,120	acier inoxydable, cuivre
	60 27 Co	5,271 a	(n,α)	⁶³ ₂₉ Cu	69,17	0,046	aluminium, cuivre
	**	**	(n,p)	⁶⁰ ₂₈ Ni	26,223	0,157	acier inoxydable, cuivre
	**	**	(n,γ)	59 27 Co	100	37,18 ± 0,06	béton
	⁶³ ₂₈ Ni	100,1 a	(n,γ)	⁶² ₂₈ Ni	3,634	$14,5 \pm 0,3$	acier inoxydable, cuivre
	**	**	(n,p)	⁶³ ₂₉ Cu	69,17	0,133	aluminium, cuivre
	⁶⁵ ₃₀ Zn	244,1 ј	(n,γ)	⁶⁴ Zn	48,6	0,76 ± 0,02	aluminium, cuivre
	••	**	(n,2n)	⁶⁶ ₃₀ Zn	27,9	0,920	aluminium, cuivre
	^{108m} ₄₇ Ag	127 a	(n,γ)	$^{107}_{47} \mathrm{Ag}$	51,839	$0,33 \pm 0,08$	plomb
	^{110m} ₄₇ Ag	249,76 j	(n,γ)	¹⁰⁹ ₄₇ Ag	48,161	$4,7 \pm 0,02$	plomb
	¹⁵² ₆₃ Eu	13,53 a	(n,γ)	¹⁵¹ ₆₃ Eu	47,8	9200 ± 100	béton
	¹⁵⁴ ₆₃ Eu	8,59 a	(n,γ)	¹⁵³ ₆₃ Eu	52,2	312 ± 7	béton
	⁴⁵ ₂₀ Ca	163 j	(n,γ)	⁴⁴ ₂₀ Ca	2,13	$0,88 \pm 0,05$	béton ordinaire
	¹³³ ₅₆ Ba	10,5 a	(n,γ)	¹³² ₅₆ Ba	0,101	7 ± 0.08	béton baryté
	¹³⁴ ₅₅ Cs	2,06 a	(n,γ)	¹³³ ₅₅ Cs	100	$29 \pm 1,5$	béton
	**	**	(n,p)	¹³⁴ 56 Ba	2,417	0,002	béton baryté
	¹³⁷ ₅₅ Cs	30,2 a	(n,p)	¹³⁷ ₅₆ Ba	11,23	0,011	béton baryté
	**	**	(n,γ)	¹³⁶ ₅₆ Ba	7,854	0,4	béton baryté
	³ ₁ H	2,35 a	(évaj	$X+n \rightarrow Y$ poration lors of	Z+ ³ H de spallation),		béton

Quantification des activités (modélisation)

Incertitudes dans la composition chimique: impact sur l'activation

Activation du réflecteur graphite interne

Activité massique du béton ordinaire de Saturne

Activation des métaux: cuivre de l'ALS

à l'axe du faisceau

Zonage déchets

EMPLACEMENTS DES CAROTTAGES AUTOUR DU SYNCHROTRON SATURNE

Vérification expérimentale du zonage modélisé

Béton: limites zones activées autour de Saturne

FONCTIONS DE TRANSFERT (béton)

	Catégorie	Coul	eur	Caractéristiques					
	1			Zone ZSRA, ZNC Mesures < 1,2 fois le BDF					
	2 TFA			BDF					
	3 TFA	FAZone ZC Mesures < à 1 Bq/g							
	4 TFA Zone ZC 1 < activité massique <100 Bq/g								
	5 FA			Zone ZC activité massique > 100 Bq/g					
Туре	Sonde y du Mip 10		Son	de X du Mip 10		SPP2			
de béton	FT (Bq.g ⁻¹ pour 1 c.s ⁻¹)	FT LD g ⁻¹ pour 1 c.s ⁻¹) (Bq.g ⁻¹)		FT g ⁻¹ pour 1 c.s ⁻¹)	LD (Bq.g ⁻¹)	FT (Bq.g ⁻¹ pour 1 c.s ⁻¹)	LD (Bq.g ⁻¹)		
ordinaire	1,9.10 ⁻³ ± 0,9.10 ⁻³ 4,9.10 ⁻³		3,6	.10 ⁻³ ± 1,2.10 ⁻³	4,4.10-3	5,2.10 ⁻³ ± 1,2.10 ⁻³	4,6.10-2		
baryté	1,9.10 ⁻² ± 0,6.10 ⁻²	8,3.10-2	4,8	.10 ⁻² ± 1,7.10 ⁻²	1,1.10-1	6,7.10 ⁻² ±1,5.10 ⁻²	9,7.10 ⁻¹		
riblonné	9,4.10 ⁻³ ± 3,7.10 ⁻³	2,8.10-2	4,0	.10 ⁻² ± 1,3.10 ⁻²	5,5.10-2	1,2.10 ⁻² ± 2,6.10 ⁻³	1,3.10-1		

Valorisation Béton (~15000 t)

- Campagne 2001- Société SCREG-COSSON
 7000 t aéroport d'ORLY (réfection d'une piste)
- Campagne 2002/2003 Société DLB (8200t)
 - 1200 t remblais drainant héliport CEA/Saclay
 - 1000 t aire 500 CEA/Saclay
 - 5500 t sous-couche de forme sous voirie
 Communes VALENTON, LIMEIL, BOISSY St LEGER
 - 500 t murs de séparation matériaux site DLB de VERT LE GRAND

Traçabilité Puce électronique

1.Contrôle radiologique des blocs de béton

3. Déchargement des blocs

2. Transport des blocs de béton

4. Préconcassage des blocs

5. Concassage des blocs

6. Départ des granulats de béton

Impact radiologique - concassage béton

> Terme source (spectre type)

3H (29,3%), 39Ar (15,9%), 55Fe (15,5%),

152Eu (12,5%), 154Eu (10,9%), 60Co (8,3%)

22Na (4,3%), 134Cs (3%), 54Mn (0,3%)

Naturels 40K, 232Th, 238U ... (0,2 Bq/g)

- > Scénario réutilisation en technique routière
 - □(1) Transport blocs (INB48 station concassage)

□(2) Concassage blocs

- □(3) Transport granulats vers chantier type parking
- (4) Réalisation couche de forme parking

□(5) Séjour 20 min/semaine du public sur parking

Bilan dosimétrique

Activation induite: 0,4 Bq/g (2 fois activité naturelle)
Mauvais contrôles sur 20 % des blocs
(1)+(2)+ (3) +(4) : 1,1.10⁻⁶ Sv
(5) : 2.10⁻⁸ Sv/an

REPARTITION PAR CATEGORIE DES BLOCS BETON SATURNE

VALORISATION DU PLOMB EN PROVENANCE DES INB 43 et 48

Files – 7 t de plomb Dehel – 1t de plomb **Marie-Madeleine Association Honfleuraise 3t de plomb** des vieux gréements Conventionnel (centaines de tonnes) Blindage de cellules (CEA/Cad) Valorisation Blindage Irradiateurs (CEA/Sac-Far) **Nucléaire** (centaines de tonnes) Blindage accélérateurs (CEA/DAM) Autorisation ASN + habilitation INB, ICPE... + engagement mise en déchets nucléaires

Exemple: bilan métaux d'une salle expérimentale de l'ALS

Valorisation de matériaux radioactifs à l'étranger ?

Bilan MAD et Démantèlement de L'INB 48

BILAN ANOMALIES ET ECARTS

	BILAN DES ECARTS	1999	2000	2001	2002	2003	2004
\sim	ZONAGE Eléments activés provenant de ZNC Blocs de béton provenant de ZNC Poutre provenant de ZNC	(5) 5	(8) 6 1 1	(5) 4 1	(4) 2 2	(3) 3	
	TRACABILITE Absence de contrôle Mauvais contrôle Absence d'identification blocs TE Doute sur l'historique de blocs de béton		(3) 3	(4) 1 1 1 1	(5) 5	(7) 2 4 1	(1) 1
	CONTAMINATION Contamination de sol		(1) 1				
	DECHETS Amiante Mercure PCB		(3) 1 1 1				
	SOURCES RADIOACTIVES		1	1	1		
	TECHNIQUE Electrique Coupure d'un câble	(1) 1		(2) 1 1	(1) 1		
	SECURITE Détection incendie Incendie	(3) 3		(2) 1	(4) 2		(2)
	Manutention Vol			1	1 1		2
	REGLEMENTATION Qualité (Audit)						(2)
	Transport Vérification Consignes						1
	TOTAL	(9)	(16)	(14)	(15)	(10)	(5)

Sûreté de l'état final INB 48- Cartographie radiologique

Sûreté de l'état final INB 48

LIMITES D'ACTIVITES RESIDUELLES DES DALLES DE BETON

1) ETAT FINAL ENVISAGE (ETUDE D'IMPACT MODELISEE EN 2001)

Points	SD2 sol	SD3 sol
1	LD	0,53 Bq/g
2	0,75 Bq/g	1,6 Bq/g
3	0,3 Bq/g	0,21 Bq/g
4	0,2 Bq/g	0,32 Bq/g
5	0,1 Bq/g	0,32 Bq/g
6	0,08 Bq/g	0,32 Bq/g
spectre	Ca45(0,05%) - H3(55%) Fe55(13%) - Na22(20%)- Mn54(0,03%) Co60(2,5%)-Eul52(9,5%)	Ca45(0,05%) - H3(55%) Fe55(13%) - Na22(20%)- Mn54(0,03%) Co60(2,5%)-Eul52(9,5%)

Zone bureaux (2000h/an) : 34 μ Sv/an en SD3 Perçage d'un trou : 2 pSv

2) ETAT FINAL REEL EN 2005: 1,5 Bq/g

Zone bureaux (2000h/an) : 14 μ Sv/an en SD3 Perçage d'un trou : 1,8 pSv

SITUATION ADMINISTRATIVE EN FIN MAD/DEM

Accélérateur IPHI : ICPE autorisée 1711.

Irradiateur COCASE : ICPE déclarée 1700.

Sûreté état final INB 43- Cartographie radiologique

Salle HE0	zone	des	fentes	d'analyse

1	~	5	
C	入	ス	ノ

¹⁵² Eu	24,0 Bq.q ⁻¹
⁵⁵ Fe	2,82 Bq.g ⁻¹
⁶⁰ Co	2,43 Bq.g ⁻¹
⁴¹ Ca	1,63 Bq.g ⁻¹
¹⁵⁴ Eu	1,50 Bq.g ⁻¹
⁶³ Ni	0,15 Bq.g ⁻¹
¹³³ Ba	0,12 Bq.g ⁻¹
¹⁴ C	0,11 Bq.g⁻¹
¹³⁴ Cs	0,10 Bq.g ⁻¹
²² Na	0,10 Bq.g ⁻¹
³⁶ Cl	0,075 Bq.g ⁻¹
Activité totale	33.1 Ba.a ⁻¹

	12	3	37 4	0 3	7			SONDE	: SG2 r	° 0668		
	11	4	40 3	3 3	0			BdF : 3	0 c/s			
	10	3	30 3	0 2	9			MAILLA	GE : 1m	X 1m		
	9	2	40 3	7 3	5			DISTAN	ICE SON	NDE / SL	JRFACE	: contac
	8	-	38 4	0 4	0			LINITÉ ·	c/s		-	
	7		40 4	5 4	0			< 3 BdF	0/0			
	6	4	47 3	9 4	0			< 10 Bdf				
	5	F	50 4	7 4	5			< 30 BdF				
	4	Ę	55 5	555	7			> 30 BdF				
	3	-	70 6	4 6	2					F	ORTE 00	3
	2		90 8	8 8	0						100	-
	1	1	05 10	05 10	00							
38	85	100	100	100	105	110	100	98	100	100	90	90
37	100	100	110	105	110	120	120	115	105	110	100	100
36	105	110	115	115	120	120	125	120	110	125	120	100
35	110	125	125	120	125	130	130	125	120	130	135	110
34	120	130	130	135	142	145	142	150	130	140	140	140
33	120	125	135	140	140	145	148	150	145	145	140	150
32	125	132	145	145	150	160	170	142	166	160	161	143
31	147	150	155	155	160	170	178	160	168	175	170	160
30	160	170	170	165	170	165	175	200	251	266	205	175
29	170	175	180	170	180	185	175	400	680	650	260	160
28	155	160	180	190	200	205	247	1260	810	650	260	252
27	164	172	190	200	210	950	1500	1774	1360	215	215	230
26	165	168	210	210	260	1185	.704	1560	360	210	215	225
25	174	185	220	230	600	100	1330	1164	388	208	193	206
24	160	181	185	230	250	550	725	630	180	205	205	190
23	160	164	200	370		230	310	220	178	192	180	160
22	133	160	175	210	200	190	210	170	160	185	160	125
21	130	140	160	140	170	160	165	150	160	175	157	109
20	120	127	145	140	160	150	140	145	150	165	130	105
19	120	195	121	140	145	140	140	140	140	127	115	110
17	114	110	127	133	145	140	120	120	110	127	102	100
16	104	109	127	100	110	105	120	120	100	112	110	90
15	10	136	139	138	132	142	125	130	122	133	106	98
1	110	112	128	125	121	124	121	124	109	104	95	88
13	95	105	108	112	141	122	102	108	107	91	94	90
12	94	102	104	115	118	120	99	113	105	89	86	94
11	97	90	103	104	113	108	107	102	103	98	80	93
10	89	102	101	109	96	104	88	103	97	86	80	106
9	80	86	110	99	103	95	90	101	87	110	86	108
8	84	82	87	102	97	102	98	86	115	115	80	130
7	92	91	89	92	88	124	126	123	223	80	78	102
6	78	86	93	97	90	120	137	121	107	75	75	104
5	72	73	82	89	96	96	133	110	90	60	65	120
4	66	79	77	90	87	85	94	64	68	65	63	107
3	70	79	79	84	85	89	90	76	68	61	59	85
2	73	72	78	76	78	83	84	67	64	62	60	72
1	79	69	79	95	86	77	75	62	63	54	53	54
			110									
		-	tunnel Nor	, t	_	_	~					
	A	в	С	U	E	F	G	н	1	J	к	L

En 2006 Zone bureaux (1600 h/an): 1,6 mSv/an

Sûreté de l'état final INB 43

INB 44 Réacteur Universitaire de Strasbourg

Déchets FA, TFA, Conventionnels (plan X,Z)

