

Analyse de poste: contamination atmosphérique en tritium

Sylvie RIGAUD Personne Compétente en Radioprotection Institut de Recherche Pierre Fabre

7^{èmes} rencontres des PCR SFRP Paris, 9 et 10 décembre 2010

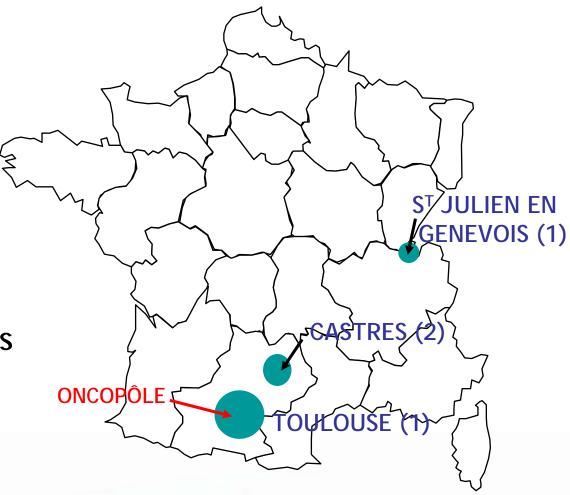
Cadre réglementaire

Circulaire n°64 du 21 avril 2010 (article R. 4451-11)

Dans le cadre de l'évaluation des risques, l'employeur, en collaboration, le cas échéant, avec le chef de l'entreprise extérieure ou le travailleur non salarié, procède à une analyse des postes de travail qui est renouvelée périodiquement et à l'occasion de toute modification des conditions pouvant affecter la santé et la sécurité des travailleurs.

Cette évaluation menée sur la base des situations dites « normales » de travail par la personne compétente en radioprotection (PCR), sous la responsabilité de l'employeur, constitue l'une des premières actions de prévention à mettre en œuvre.

Évaluation des doses collectives et individuelles Valeur de l'exposition externe et interne **Justification optimisation limitation**



Utilisation de radionucléides

4 sites R&D
utilisateurs de
sources non scellées

Utilisation en recherche biomédicale

- ➤ Tests de binding (liaison ligand froid-ligand chaud récepteur) *in vivo* et *in vitro*, binding fonctionnel *in vitro*
- Recherche d'inhibiteurs d'enzymes
- Etude de sécurité du médicament

Radioéléments actuellement utilisés : ³H, ¹⁴C, ³⁵S, ¹²⁵I, ³²P, ³³P, ⁵¹Cr

Données qualitatives/quantitatives fiables, précises, délais courts

Pallie manque sensibilité ou impossibilité des techniques analytiques « froides »

Méthodes d'évaluation de l'exposition interne

Eint= $A \times k \times 1/f \times DPUI$

- A=Activité manipulée (Bq)
- k=facteur de volatilité=0.01
- f=1 10 1000
- ► DPUI= 4,1.10⁻¹¹(³H) Sv/Bq
 - DPUI= $5.9.10^{-9}(^{14}C)$ Sv/Bq

16.8 mSv / en 1 seule étude pK!!

$$A = Av \times Q \times t$$
 puis Eint = $A \times DPUI$

- ▶ A=Activité inhalée (Bq)

 O.1 mSv / évaporation (140 MBq et 0.5h)
- Q=Débit respiratoire \$\tilde{\rho}\$ 1 mSv / phase animale (140 MBq et 5h) (1.2m³/h)
- t=Temps d'exposition (h)

1.13 mSv / étude soit 5.65 mSv / 5 études pK !!

Radiotoxicologie sur prélèvement urinaire: Bilan ponctuel ou au maximum semestriel

Ne surestime t'on pas le facteur K?

Comment apprécier le « facteur k »

k = % inhalable

le manipulateur ne respirant jamais la totalité de la quantité évaporée!

évaluation de façon expérimentale du risque d'exposition interne



Mise en place d'une étude de contamination atmosphérique

- Déterminer les modes opératoires conduisant aux situations <u>les plus pénalisantes</u>
- Rechercher et quantifier si nécessaire la présence de radioactivité dans l'air potentiellement inhalable par le manipulateur lors de ces étapes (risque et niveau)

Etude de contrôle de contamination atmosphérique en tritium

Test de binding

in vitro: Stimulation = à partir de cellules Incubation Sacrifice Prélèvement organe cible Broyage Filtration Scintillation + Plus il y a de la radioactivité, Comptage moins le ligand à d'affinité pour le récepteur. Radioligand: molécule radio marquée ayant une affinité pour le récepteur Ligand froid : molécule se liant au récepteur si elle a une affinité pour celui ci. Les médicaments sont des exemples de ligands. C'est un candidat médicament. Récepteur : protéine située à la surface des cellules capable de fixer un ligand.

in vivo

= à partir de souris

PRINCIPE DU BINDING :

Réaction de compétition entre un ligand radioactif et un ligand non radioactif, spécifiques pour un même récepteur.

MESURE D'AFFINITE D'UN LIGAND FROID POUR UN RECEPTEUR

ETUDE IN VIVO « LLNA » (Local Lymph Node Assay): **ETAPES RADIOACTIVES**

ETAPE 1: LABORATOIRE

Préparation/contrôle Solution Administration :

- → 37 MBg sous hotte dans solvant aqueux
- → **3h** environ

ETAPE 2: MODULE D'UNITE ANIMALE

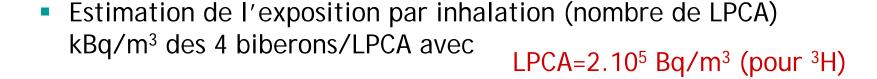
Phase expérimentale radioactive :

- → **Injection intra-veineuse** (veine caudale)
- → Plusieurs groupes de souris
- → 1h environ sur paillasse

Les cages des souris traitées sont entreposées dans un bac :

- → **5h** dans module (R~20/h)
- → Bac avec couvercle

- → Le bac est ouvert dans le module
- → Les ganglions lymphatiques sont prélevés
- → Les déchets sont éliminés



Méthode de calcul

Comptages des pièges :

- Expression des résultats en kBq (débit respiratoire = 1,2 m³/h)
- Estimation de l'exposition interne mise en jeu (μ Sv/h) kBq/h des 4 biberons x h(g), avec h(g)=4.1.10⁻¹¹ Sv/Bq (pour ³H)

Autre indicateur

RCA: repère en concentration atmosphérique (en Bq/m³) Estimation du RCA conduisant à la limite supérieure de la zone contrôlée verte soit 25 µSv/h

 $RCA = 25.10^{-6} / Q \times h(g)_{inh}$

 $RCA = 25.10^{-6} / 1.2 \times 4.1.10^{-11}$

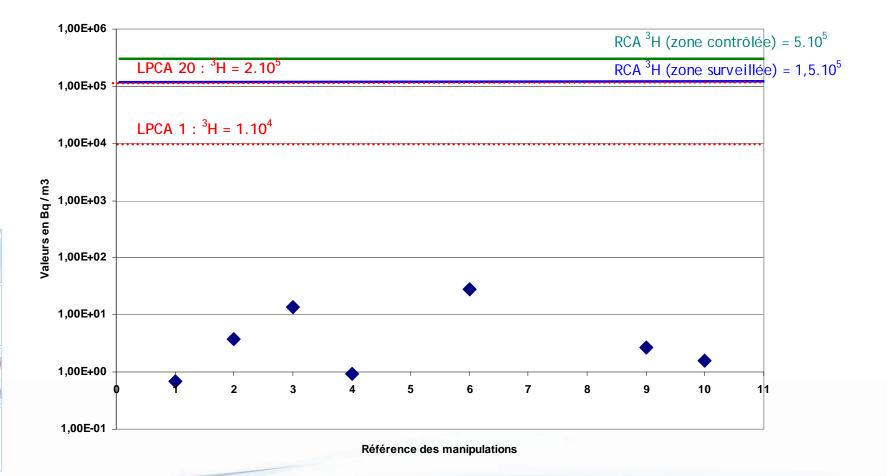
 $RCA \cong 5.10^5 \text{ Bq.m}^{-3} \text{ (pour }^3\text{H)}$

Estimation du RCA en fonction d'une dose efficace engagée de 7.5 µSv/h (limite supérieure zone surveillée)

 $RCA \cong 1.5.10^5 \text{ Bq.m}^{-3} \text{ (pour }^{3}\text{H)}$

Résultats binding (in vitro et in vivo)

	<u>N°</u> <u>étude</u>	<u>Catégorie</u> <u>du local</u>	<u>Détails du local</u>	<u>Quantités en stock</u>	<u>Volume(L)</u>	<u>Durée</u>	<u>Valeurs</u> <u>en Bq/m³</u>	<u>Valeurs</u> <u>en µSv</u>
	1	Local de stockage déchets radioactifs	Déchets catégorie SI-SNI-SL-LA- LS V local ≠ 70 m³	141 MBq de ³ H en stock au moment de l'étude	2 à 804.70	94H	0.7	0,07
	2	Local de stockage sources non scellées	³ H- ³⁵ S- ¹⁴ C V local ≠ 15 m ³	1226 MBq de ³ H en stock au moment de l'étude	1 à 987.60	66H	3.74	0,4
	<u>N•</u> <u>étude</u>	<u>Type de</u> <u>manipulation</u>	<u>Radioligands</u> <u>manipulés</u>	<u>Quantités totales</u> <u>manipulées</u>	<u>Volume(L)</u>	<u>Durée</u>	<u>Valeurs</u> <u>en Bq/m³</u>	<u>Valeurs</u> <u>en µSv</u>
	3-4- 6-8- 9-10	Binding in vitro	Cf liste jointe *	0,3 MBq à 7,25 MBq	228.8 à 4 153.20	8h à 140H	≤1,5 BDF à 28.5	0 à 2.80
	7	Binding in vivo	³ H RX821002	3,26 MBq	428.3	15H	≤ 1,5 BDF	_


³

^{*= 3}H WIN35428 /3H CITALOPRAM / 3H NISOXETINE / 3H SPIPERONE /3H SCH-23390 /3H MESULERGINE 3H 8-OH-DPAT / 3H GR125,743 / 3H-NALOXONE / 3H-DAMGO / 3H CORTISONE

Analyse du risque d'exposition interne

Bilan pour les études de binding (vitro - vivo)

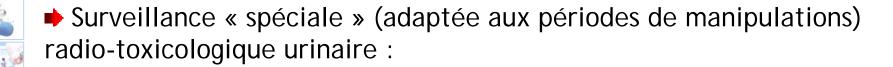
Classement de l'ensemble des zones réglementées

ZONES SURVEILLEES

Classement des travailleurs: catégorie B

Etudes sécurité du médicament (in vivo)

Phase d'étude	Durée barbotage (h)	Volume total air aspiré (L)	Moyenne Activité Air (KBq/m³)	Moyenne Activité Inhalable (KBq/h)
LLNA_ Préparation Solution d'administration (³ H-Thymidine)	2h49	83	0	0
LLNA_Phase expérimentale radioactive	6h32	190	8,225	9,871
Local déchets radioactifs	137h36	4015	0,001	0,001



Etudes sécurité du médicament (in vivo)

Phase d'étude	Activité départ mise en jeu (KBq)	Activité totale barboteurs (KBq)	Contamination atmosphérique (%)	Exposition interne (µSv/h)	Exposition interne (nbre LPCA*)
LLNA_ Préparation Solution d'administration (3H-Thymidine)	37000	0,000	0,000	0,0000	0,00
LLNA_Phase expérimentale radioactive	37000	1,559	0,042	0,4047	0,04
Local déchets radioactifs	7700	0,005	0,000	0,0001	6E-06

LPCA* = 2E5 Bq/m³ (Guide pratique radionucléides de Delacroix, Guerre et Leblanc)

Soit 800 μSv/an pour 2000h de travail

Résultats toujours négatifs!

Suites à donner

Améliorer les conditions de l'étude

Mettre en place une recherche sur le métabolisme pulmonaire de la 3 H-Thymidine (LLNA) chez la souris (3 H+O $_{2} \rightarrow$ eau tritiée)

- Passer notre « k » à 0.001, voire 0.0001
- Prendre la formule la plus pénalisante pour nos études de postes (et la plus aisée)
- Passer les zones de stockage (déchets & sol. mères) en zones surveillées (en accord avec la réglementation)

Amélioration de l'étude

Etude de l'excrétion pulmonaire d'un produit radiomarqué par « metabowl »

Résultats de l'étude de l'excrétion pulmonaire par « metabowl »

Tranche horaire	Liquide de piège de l'air expiré	Activité totale de ³ H expiré par souris (KBq)	Elimination ³ H expiré en % dose administrée	Exposition maximale du tech. d'étude	Exposition maximale pour une étude classique*	Exposition maximale pour 1 an**
Manip.1 0/5 h sur 10 souris (Activité reçue in toto : 6700.5 KBq)	Piège 1	6,54	0,88			
	Piège 2	0,027	0,004	0,269 10,77 μSv/souris μSv sur 5h		0,13 mSv / an
	"garde"	0,0002	0,00003			
Total		6,57	0,88			
Manip.2 0/1 h	Piège 1	1,57	0,20			7
sur 10 souris (Activité reçue in toto : 7123.77 KBq)	Piège 2	0,004	0,001	0,065 / 2,58 / μSv/souris / μSv sur 1h/		0,03 mSv / an
	''garde''	BLQ	BLQ			
Total	1,57	0,20				

^{*:} Mettant en jeu 40 souris

^{** :} Avec 12 études LLNA réalisées en 1 an

Analyse des résultats

Même en considérant la situation la plus pénalisante:

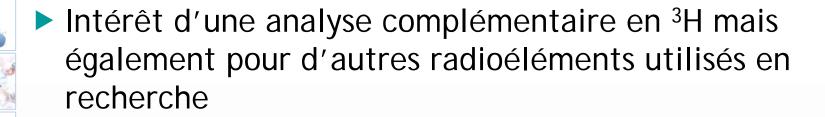
- Nombre d'animaux maximum
- Techniciens d'étude respirent la totalité du tritium expiré par les souris en 1h(temps d'injection des souris)
- ▶ Ventilation du module (R~ 20h-1) non prise en compte
- Nombre maximum d'études par an

Classification du personnel (techniciens d'étude): <u>Catégorie B</u> (0.03 mSv par an)

Classification du local (module d'hébergement souris): Zone surveillée (2.6 µSv sur 1h)

Démarche d'optimisation

- Communication des résultats au personnel
- Manipulateurs présents 1h sur 6h
- Ventilation du bac « souris »
- Bac placé vers grilles d'aération du module d'hébergement
- Amélioration de la formation du personnel (TP)





Conclusions

- Utilisation de la formule de dose résultante la plus aisée
- Validation de notre hypothèse de départ
- Fixer la valeur du % inhalé en 3H à 0.001 voire 0.0001

Remerciements

- Sandrine CHANAL, PCR (études sécurité du médicament) CASTRES
- Bernadette MAYNADIER, PCR (responsable pharmacocinétique animale) CASTRES
- Olivier COLAS, ancien PCR St JULIEN-GENEVOIS
- Véronique RAUFAST, PCR TOULOUSE

- Fabrice GAUDET (coordinateur du groupe des PCR PIERRE FABRE)
 - St JULIEN-GENEVOIS
- Francis LEMONTEY CASTRES

