

COMPORTEMENT ET EFFETS DES RADIONUCLEIDES CHEZ L'HOMME

Florence MENETRIER CEA/DSV/Prositon

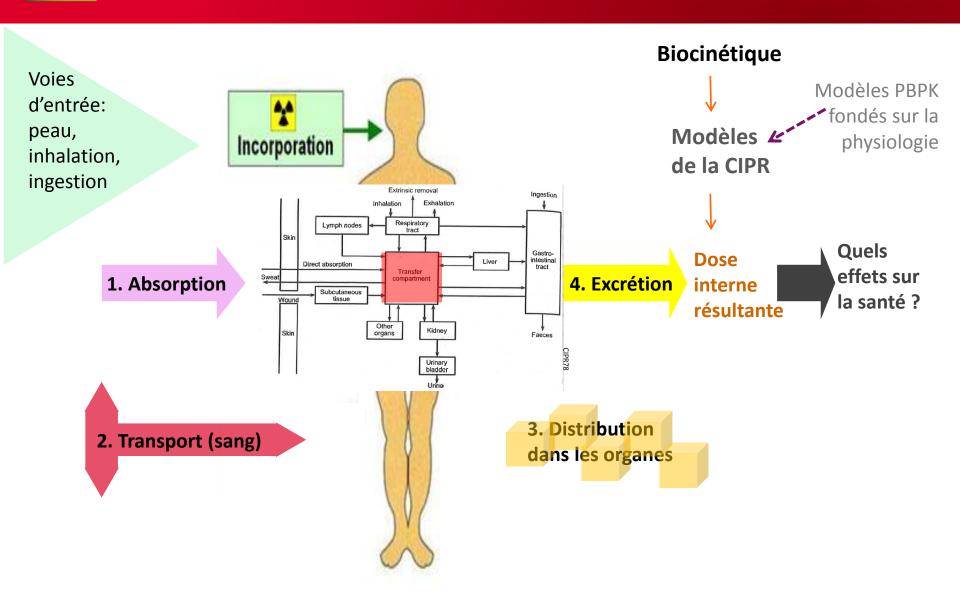
PROtection Sanitaire contre les rayonnements Ionisants et TOxiques Nucléaires

www.cea.fr 06 OCTOBRE 2015

OBJECTIF

- Comprendre interactions possibles des radionucléides avec le corps humain
- Panorama général sur les effets biologiques et sanitaires des radionucléides
- Introduire les exposés suivants
- Comprendre éléments utiles pour la mise au point d'un traitement d'une contamination radiologique

COMPORTEMENT D'UN RADIONUCLÉIDE DANS LE CORPS HUMAIN



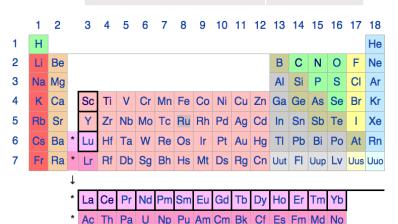
www.cea.fr

06 OCTOBRE 2015

COMPORTEMENT D'UN RADIONUCLEIDE: BIOCINÉTIQUE

BIOCINETIQUE DES RADIONUCLEIDES

Caractéristiques du comportement d'un radionucléide

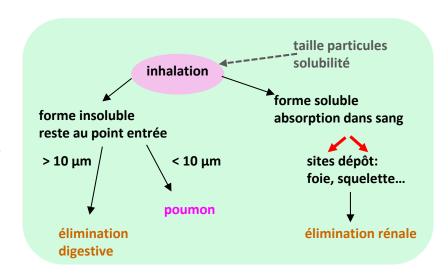

- A nature et composé chimique du radionucléide
 - Facteur absorption: de 0 à 1
- Transport dans sang: radionucléide rarement seul (sels, protéines...): transferrine pour U et Pu par exemple
- D Distribution
 - uniforme ou hétérogène
 - Isotopes d'un élément chimique: mêmes organes de dépôt: iode stable et iodes radioactifs
 - Période biologique et effective
 - Analogie chimique, comme un élément physiologique:
 - K Cs et Ca Sr

E Excrétion

- à partir du compartiment systémique: urinaire surtout
- voie digestive: suite à ingestion ou inhalation...
- Autres voies: phanères, cheveux, peau, lait, placenta

Facteur d'absorption gastro-intestinal f_A

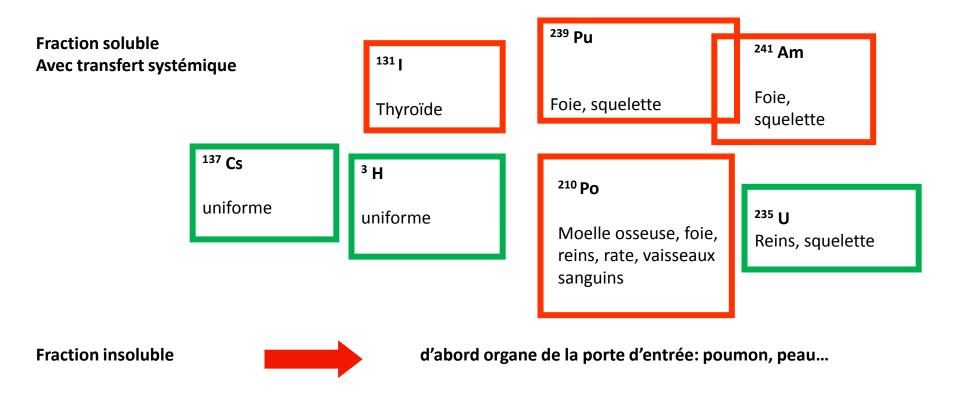
Élément chimique	f _A
Am, Np, Pu	0,0005
U (insoluble)	0,002
Hg (inorg), U (soluble)	0,02
Cr (VI), Mg, Fe, Co	< 0,1
Ra, Pb	0,2
Sr, Ca	0,3
P	0,8
³ H, I, Cs, Hg (org)	1


BIOCINETIQUE DES RADIONUCLEIDES

Paramètres influençant le comportement du radionucléide

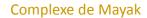
Par ingestion: solubilité, masse, forme physicochimique, durée administration, âge (absorption x10 chez jeune enfant)

UF 6 'fugace' ≠ UO2 (fonction solubilité)


- Par inhalation: absorption dépend de taille particules, solubilité
- Par voie cutanée: solubilité du composé, localisation, étendue, état de la peau passage facile: eau tritiée, iode
- Cas de la blessure: transfert variable une partie du radionucléide peut passer rapidement dans la circulation, une autre partie reste localement dans la plaie

BIOCINETIQUE DES RADIONUCLEIDES


Distribution uniforme ou organes cibles spécifiques ?

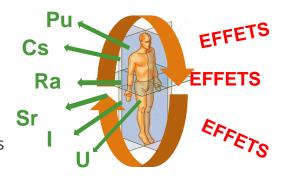


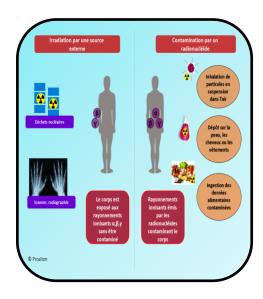
EFFETS DES RADIONUCLÉIDES APRÈS CONTAMINATION INTERNE

Projet Manhattan

06 OCTOBRE 2015

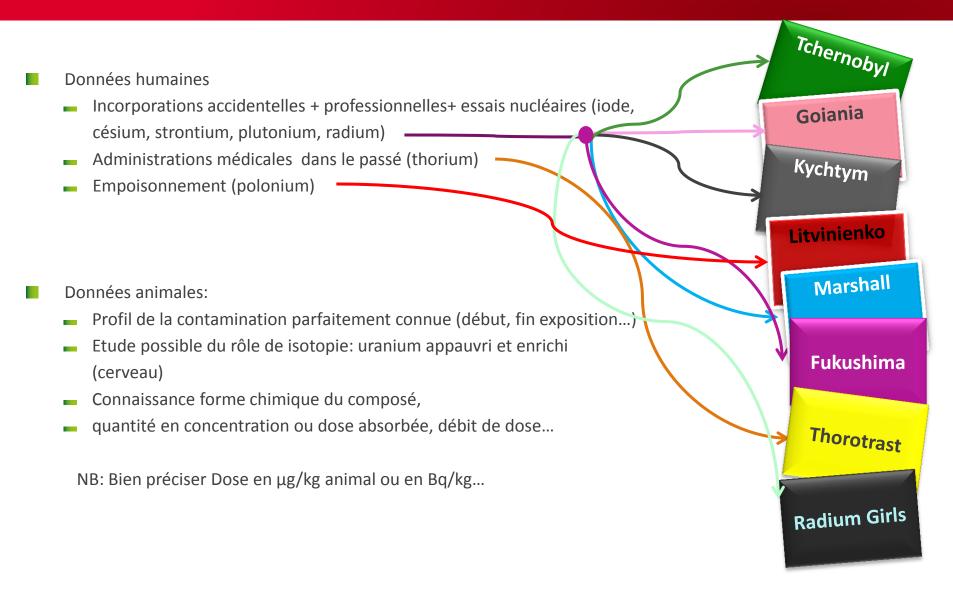
www.cea.fr


TYPES D'EFFETS TOXIQUES


Biocinétique: action de l'organisme sur le radionucléide

Etude des effets: actions du radionucléide sur l'organisme

- Notions de toxicologie nucléaire humaine:
 - effets toxiques ou radiotoxiques sur santé des radionucléides et éléments chimiques utilisés dans la recherche et l'industrie nucléaire
 - pas étude des effets: radionucléides en médecine, irradiation externe
- Dans le cas d'une contamination radioactive humaine, selon les conditions discutées précédemment:
 - le plus souvent type d'effets à craindre, effets aléatoires à long terme type cancer:
 - Cancer de la thyroïde après Tchernobyl dû à iode-131
 - Cancer osseux des sinus avec radium-226
 - Cependant situations où effets déterministes: quelques cas d'accidents ou d'empoisonnement
- Effets radiotoxiques ou chimiotoxiques ?



TYPES D'EFFETS TOXIQUES

	Effets déterministes	Effets stochastiques (aléatoires)	
Seuil	Mis en évidence	Actuellement considéré comme égal à 0	
Sévérité de l'atteinte	Proportionnelle à la dose	Indépendant de la dose	
Type d'effet	Spécifique du tissu (dû à mort cellulaire)	Type cancer - Pas spécifique	
Occurrence	Survient toujours si dose supérieure au seuil	Probabilité proportionnelle à la dose	
Période de latence	Courte ou longue en fonction du tissu	Plusieurs années voire dizaines d'années	
Réversibilité	Possible en fonction du tissu et de la dose	Non réversible	

ORIGINE DES DONNÉES DE TOXICITÉ

PARAMÈTRES INFLUANT SUR LA TOXICITÉ

- En rapport avec le radionucléide:
 - nature
 - propriétés chimiques
 - propriétés radioactives: période radioactive et effective

$$1/T_{p} + 1/T_{b} = 1/T_{e}$$

- Modalités d'incorporation
 - voie d'entrée
 - durée incorporation (aiguë, chronique)
- contexte sujet hôte (âge, sexe, susceptibilité génétique), état physiologique (grossesse, à jeun) ou pathologie

association de plusieurs toxiques
 Selon le cas: toxique cumulatif ou excrétion rapide

¹³¹ _[
T_p: 8 j

T_a:~7j

³ H

T_p: 12,3 ans

 T_e : ~ 10 jours

²³⁹ Pu

T_p: 24 000 ans

T_e: plusieurs décennies

¹³⁷ Cs

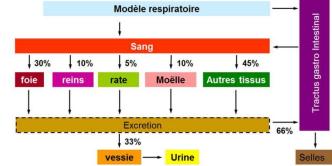
 T_p : 30 ans

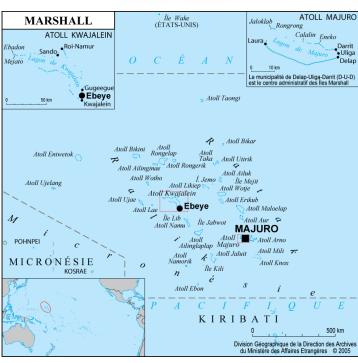
T_e: autour de 100 j (selon sexe)

INTERPRÉTATION DES ETUDES

	Chez l'animal	Chez l'Homme	In vitro
Etude Biocinétique			
Etude de	Administration unique		Compréhension des mécanismes
Toxicité et radiotoxicité	Dose élevée Administration répétée Dose faible Dose faible		
Limitations fréquentes de	• Etude représentative d'une exposition réaliste (durée, dose, forme chimique)	• Étude co-facteurs (tabac, alcool, exposition à des toxiques chimiques, alimentation)	discerner mécanismes à doses faibles et doses élevées
l'étude	Organe cible compatible avec physiologie humaine	 Reconstruction de la dose Discriminer exposition externe/contamination interne 	

- Analogie chimique lorsque manque de données toxicologiques
- Synthèse des données par organismes nationaux ou internationaux: UNSCEAR, ATSDR, IARC, WHO... Certains spécialisés dans la chimiotoxicité, d'autres dans la radiotoxicité


SITUATIONS DE CONTAMINATION INTERNE AVEC EFFETS DÉTERMINISTES


Cas de contaminations humaines

- Dose/débit de dose élevés
- Ampleur: du dysfonctionnement d'un organe jusqu'à la mort du sujet
- Durée: variable avec réversibilité possible
- Organes cibles:lymphopénie, fibrose au niveau des ganglions lymphatiques et fibrose pulmonaire (avec plutonium), rein avec atteinte des cellules tubulaires du néphron (avec uranium)
- Délai variable:
 - quelques jours à plusieurs semaines: avec le polonium (focus plus loin)

 plusieurs années: avec iodes radioactifs comme hypothyroïdie, après essais nucléaires.

CONTAMINATION AU POLONIUM


- Po-210: Émetteur alpha pur Énergie élevée chaîne de désintégration de uranium-238
- Conséquences de contaminations humaines
 - Intoxication par inhalation (estimation 530 MBq) d'un travailleur russe: décès survenu 13j après: vomissements, forte fièvre, pas de diarrhées, effondrement des plaquettes – évaluation d'une dose élevée au poumon + dose importante aux reins et < 2 Gy à moelle osseuse</p>

Empoisonnement de A. Litvinienko par ingestion
Décès 23 j après contamination probable
Mort liée à défaillance de plusieurs organes, s'ajoutant
à l'atteinte de la moelle osseuse.

Selon les estimations, empoisonnement dû à ingestion de $< 10 \mu g$ de Polonium-210 (soit plus de 1 GBq)

Estimation des doses très élevées aux organes

Site de rétention	Activité mesurée après décès (MBq)	
Poumon	13	
Reins	4,5	
Foie	21	
Corps entier	100	

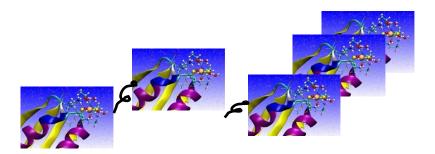
Dose absorbée cumulée (en Gy par GBq ingéré)			
Moelle osseuse	foie	reins	rate
3,6	20	30	13

TOXICITÉ CHIMIQUE DE L'URANIUM

Contaminations humaines

	Cas	Symptômes précoces (< 4 semaines)	Symptômes à long terme (≥ 4 semaines)
t al., 1996)	Ingestion délibérée 15g d'acetate d'uranium Pic de concentration en uranium: 100 μg U /g rein	Lésion rénale avec (dialyse pendant 2 semaines) Effets divers: anémie, muscles, cœur, foie et intestin	À 6 mois: encore symptômes de dysfontionnement rénal Les autres symptômes ont disparu
(Pavlakis et al.,	Accident industriel Brûlure avec nitrate d'uranium et d'oxyde Pic de concentration en uranium: 35 µg U /g rein	Brûlures cutanées et dysfonctionnement rénal	Retour à la normale de la fonction rénale: 1 mois après accident
(Zhao and Zhao, 1990)	Accident inhalation Poudre d' UF ₄ Pic de concentration en uranium: 10 μg U /g rein	Douleur abdominale 7 jours et diarrhée	De 78 jours à 590 j: dysfonctionnement rénal Augmentation de l'uranium dans les urines (pic à 2 mois), retour au bruit de fond 3 ans après

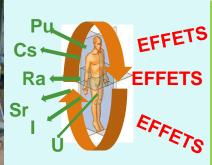
Toxicité chimique prépondérante - effets précoces, long terme et réversibles



et/ou

VERS LE TRAITEMENT

- Pour disposer d'un traitement efficace:
 - Nécessité de bloquer l'entrée du contaminant à une porte d'entrée
 - Influencer sa biocinétique dans l'organisme
- Cela suppose d'identifier chimiquement des molécules candidates susceptibles de se lier fortement au radionucléide



CONCLUSION

www.cea.fr

06 OCTOBRE 2015

Cea conclusion

- Généralement, effets nocifs pour la santé à long terme mais cas de contamination unique aigue existent
- Limites des études toxicologiques ou radiotoxicologiques peuvent donc limiter:
 - leur transposition à l'Homme
 - leur extrapolation des fortes aux faibles doses
- Parfois également multi-exposition: on ne connaît généralement pas conséquences
- Intérêt d'identifier mécanismes de transport et de dépôt dans l'organisme du radionucléide

- Voies d'entrée du contaminant: à envisager aussi pour l'administration du traitement?
- Connaissance satisfaisante de la biocinétique d'un radionucléide facilite l'identification de molécules chelatantes
- Affinité des radionucléides avec macromolécules: à connaitre pour identifier les candidats chélatants les plus affins

Merci de votre attention

http://www-prositon.cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives Centre CEA de Fontenay-aux-Roses | 18 route du Panorama – BP 6 92 265 Fontenay-aux-Roses cedex T. +33 (0)1 46 54 98 29 | F. +33 (0)1 46 54 98 72 Direction des sciences du vivant

PROtection Sanitaire contre les rayonnements
Ionisants et TOxiques Nucléaires