

SFRP

Journée technique de la section recherche et santé CONTAMINATION INTERNE: QUELS DÉFIS POUR DEMAIN ?

TRAITEMENT DES CONTAMINATIONS INTERNES: EFFORT RÉCENT FRANÇAIS POUR SON AMÉLIORATION

Journée technique SFRP | Olivier Grémy

06 OCTOBRE 2015

STRATÉGIES pour AMÉLIORER l'EFFICACITÉ d'un TRAITEMENT DÉCORPORANT par CHÉLATION

Trois stratégies principales pour améliorer les <u>thérapeutiques de chélation</u>

- Optimisation d'un schéma thérapeutique
- Ciblage des tissus de rétention des radionucléides
 - Tissus primaires de contamination (poumons, plaie...)
 - Tissus secondaires de dépôts (tissus cibles)

par formulation galénique et/ou voie d'administration

Recherche et synthèse de nouveaux chélateurs (affinité, sélectivité, toxicité...)

AMÉLIORATION D'UN SCHÉMA THÉRAPEUTIQUE

Traitement chronique différé au DTPA après contamination pulmonaire au plutonium: influence de l'intervalle de temps entre deux administrations successives

AMÉLIORATION DU SCHÉMA THÉRAPEUTIQUE:

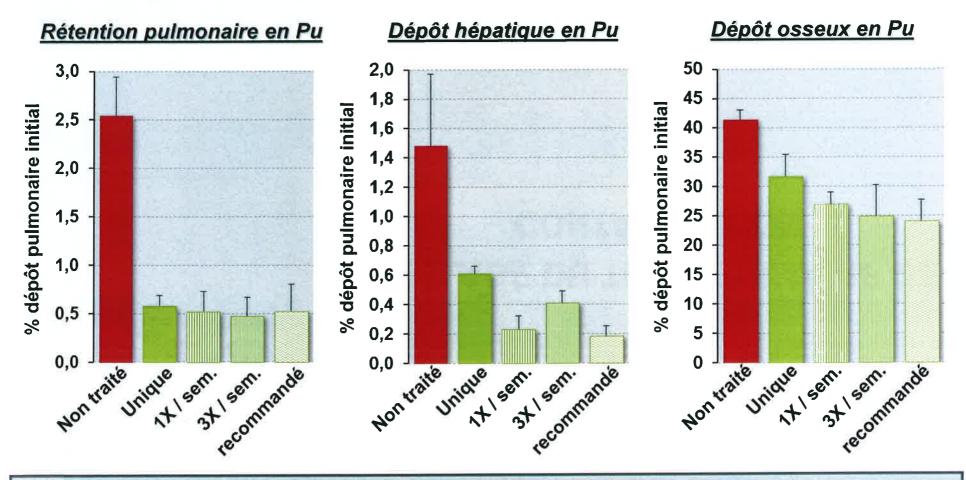
AREVA

TRAITEMENT CHRONIQUE au DTPA après CONTAMINATION PULMONAIRE au Pu

PROBLÉMATIQUES

Evaluation de l'influence de l'intervalle de temps entre deux administrations successives, dans le cadre d'un traitement chronique différé

PROTOCOLE EXPÉRÎMENTAL


- ✔ Contamination pulmonaire de rats : intra-trachéale de citrate de Pu
- ✓ Traitement systémique différé (J+21) à une posologie totale de 360 µmol.kg⁻¹ en DTPA
 - → unique
 - → chronique = administrations répétées 16 fois à 22,5 µmol.kg⁻¹
 - 1 par semaine,
 - 3 par semaine,
 - selon le protocole chronique recommandé (1 par jour pendant 3 jours, 3 par semaine pendant 3 semaines puis 1 par semaine)
- ✓ Mesure des rétentions tissulaires à J+128 (~18 semaines)

AMÉLIORATION DU SCHÉMA THÉRAPEUTIQUE:

AREVA

TRAITEMENT CHRONIQUE au DTPA après CONTAMINATION PULMONAIRE au Pu

▶ Dans le cadre d'un traitement chronique différé au DTPA, une forte posologie délivrée de manière fractionnée est au moins aussi efficace que la même posologie délivrée en une seule fois.

CIBLAGE DU TISSU PRIMAIRE DE CONTAMINATION

Administration locale du DTPA après contamination pulmonaire au plutonium

CIBLAGE DU TISSU PRIMAIRE DE CONTAMINATION:

ADMINISTRATION LOCALE du DTPA après CONTAMINATION PULMONAIRE au Pu

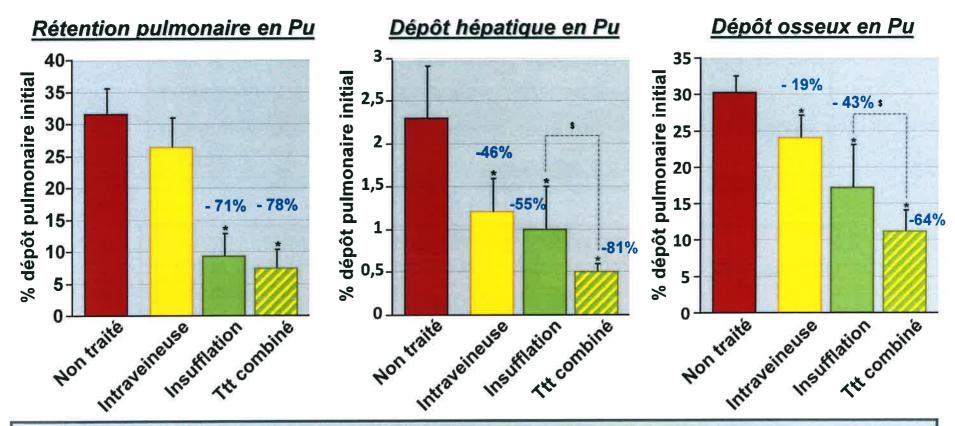
Inhalation = voie possible de contamination interne

Cibler les poumons → développer une formulation de DTPA administrable par les voies aériennes

PROBLÉMATIQUE

► Evaluation de l'efficacité d'une poudre sèche inhalable de DTPA sur un modèle rat de contamination pulmonaire au plutonium.

PROTOCOLE EXPÉRIMENTAL


- Contamination pulmonaire de rats: intra-trachéale de nitrate de Pu
- ✔ Traitement décorporant par administration précoce de DTPA
 - → local: insufflation de la poudre sèche à H+1 (20 µmol.kg-1)
 - → systémique: i.v. de la solution à H+1 (20 µmol.kg⁻¹)
 - → combiné: insufflation à H+1 puis i.v. à H+2
- ✓ Mesure des rétentions tissulaires en Pu à J+7

Grémy O, Radiat Res, 2012 (CNRS; CEA)

CIBLAGE DU TISSU PRIMAIRE DE CONTAMINATION:

ADMINISTRATION LOCALE du DTPA après CONTAMINATION PULMONAIRE au Pu

- ▶ Insufflation poudre sèche DTPA plus efficace que l'intraveineuse DTPA pour limiter la rétention pulmonaire et pour prévenir les dépôts secondaires hépatiques et osseux de Pu
- ► Traitement combiné encore plus efficace que l'insufflation poudre sèche DTPA pour prévenir des dépôts secondaires extra-pulmonaires

CIBLAGE DU TISSU PRIMAIRE DE CONTAMINATION:

ADMINISTRATION LOCALE du DTPA après CONTAMINATION PULMONAIRE au Pu

- ▶ Deux poudres inhalables de DTPA formulées par la Pharmacie Centrale des Armées:
 - -poudre micronisée de DTPA pur (amélioration process)
 - -poudre de DTPA adsorbé à des particules de lactose

Dans le cadre du projet européen CATO (PCA; CEA)

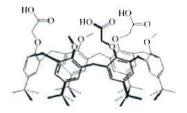
▶ Ciblage du tissu primaire de contamination dans le cas de la plaie contaminée: injection localisée plus efficace que l'injection systémique.

Griffiths NM, 2014, Int J Radiat Biol (CEA)

PRÉVENTION DE LA CONTAMINATION INTERNE PAR DÉCONTAMINATION

Piégeage de l'uranium sur la peau par une nanoémulsion de calixarènes

PRÉVENTION DE LA CONTAMINATION INTERNE:


PIÉGEAGE de l'U sur la PEAU par une NANOÉMULSION de CALIXARÈNES

Passage transcutané = voie possible de contamination interne

Décontaminer l'U sur la peau → trouver un traitement plus efficace que les traitements appliqués/envisagés (eau savonneuse, eau avec DTPA ou EHBP, pansements absorbants...)

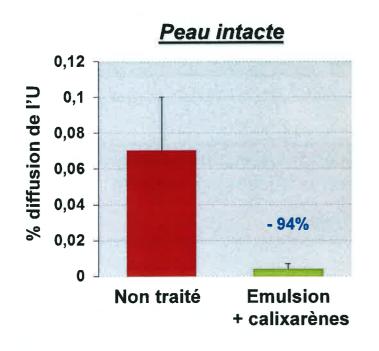
PROBLÉMATIQUE

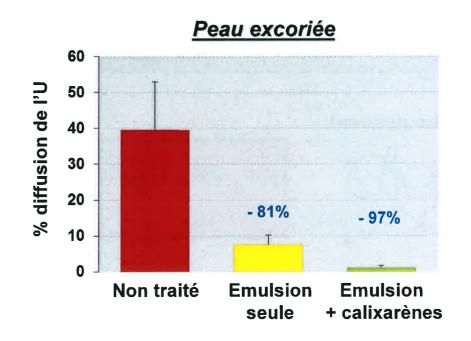
Evaluer l'efficacité d'une nanoémulsion huile dans l'eau incorporant un chélateur de type calixarène

p-tertbutylcalix[6]arène

PROTOCOLE EXPÉRIMENTAL

- ✓ Contamination surfacique par du nitrate d'uranyle d'explants cutanés d'oreilles de porc montés sur des cellules de diffusion de Franz
- ✔ Traitement immédiat par application d'une nanoémulsion de calixarènes
- ✔ Evaluation de l'absorption transcutanée cumulée sur 24h


Spagnul A, 2011, Eur J Pharm Biopharm (CNRS; IRSN)



PRÉVENTION DE LA CONTAMINATION INTERNE:

PIÉGEAGE de l'U sur la PEAU par une NANOÉMULSION de CALIXARÈNES

Passage percutané de l'U cumulé sur 24h

- ► Très forte limitation du passage transcutané de l'U par l'application immédiate de la nanoémulsion de calixarènes
- ▶ Limitation plus faible (facteur 3,5) en cas d'application plus tardive entre 5 et 30 min

PRÉVENTION DE LA CONTAMINATION INTERNE:

PIÉGEAGE de l'U sur la PEAU par une NANOÉMULSION de CALIXARÈNES

- ► Efficacité démontrée sur d'autres modèles *ex vivo* de blessures superficielles telles les microcoupures et les micropiqûres (Grives S, J Pharm Sci, 2015)
- ▶ Développements d'une version lavante (Phan G, Health Phys, 2013) et thermo-gélifiante (Belhomme-Henry C, Pharm Dev Technol 2014) de cette formulation de calixarènes, pour traiter des zones de peau plus étendues ou lésées
- ▶ Premiers tests *in vivo* de la première version: efficacités similaires entre nanoémulsion seule et nanoémulsion de calixarènes (rapport calixarènes/U trop faible?)

CIBLAGE DES TISSUS SECONDAIRES DE DÉPÔTS

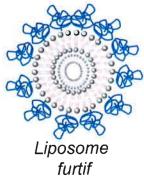
Vectorisation du DTPA par des liposomes après contamination au plutonium

CIBLAGE DES TISSUS SECONDAIRES DE DÉPÔTS:

VECTORISATION du DTPA par des LIPOSOMES

Efficacité du DTPA limitée par sa faible demi-vie plasmatique et sa faible pénétration cellulaire

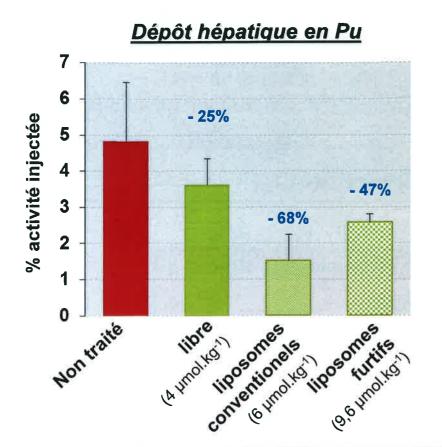
développer une formulation galénique améliorant sa biodisponibilité

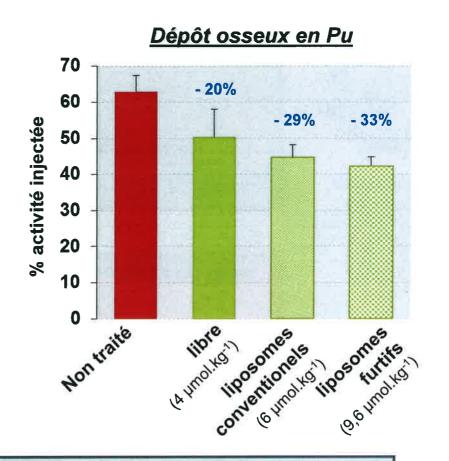

PROBLÉMATIQUE

Evaluer l'efficacité de formulations liposomales du DTPA

PROTOCOLE EXPÉRÎMENTAL

- ✓ Contamination systémique de rats: intraveineuse de Pu-citrate
- ✓ Traitement décorporant par administration de DTPA (H+2)
 - → libre en solution (4 µmol.kg⁻¹)
 - → encapsulé dans des liposomes conventionnels (6 µmol.kg⁻¹)
 - → encapsulé dans des liposomes furtifs (9,6 µmol.kg⁻¹)
- ✓ Mesure des rétentions tissulaires en Pu à J+16





CIBLAGE DES TISSUS SECONDAIRES DE DÉPÔTS:

VECTORISATION du DTPA par des LIPOSOMES

- ▶ Plus grande efficacité du DTPA encapsulé dans les liposomes que du DTPA libre pour limiter les dépôts hépatiques et osseux
- ▶ Liposomes conventionnels plus efficaces que liposomes furtifs de DTPA

SYNTHÈSE DE NOUVEAUX CHÉLATEURS

Recherche de chélateurs affins pour l'uranium

SYNTHÈSE DE NOUVEAUX CHÉLATEURS:

RECHERCHE de CHÉLATEURS AFFINS pour l'URANIUM

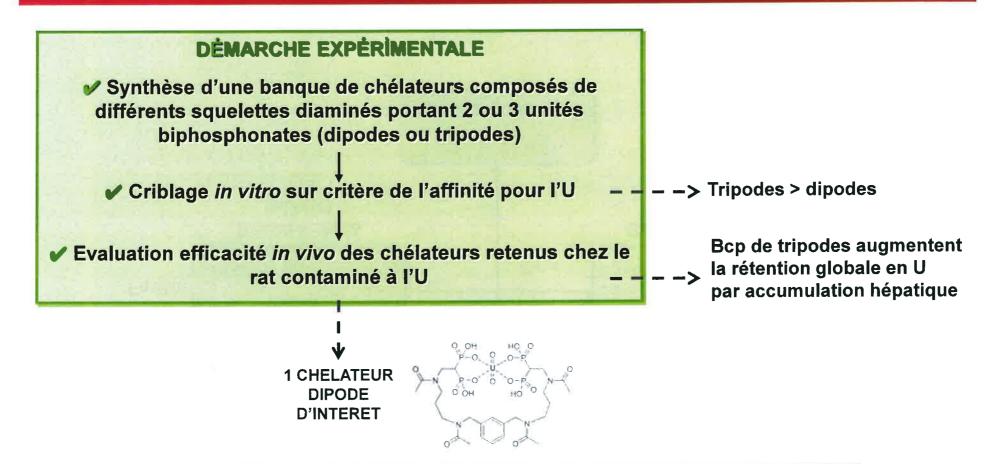
✓ Synthèse de nouveaux chélateurs de l'U

FONCTIONS CONTRANOPHILES

HOPO (hydroxypyridinones)

CAMS (sulfocatecholamides)

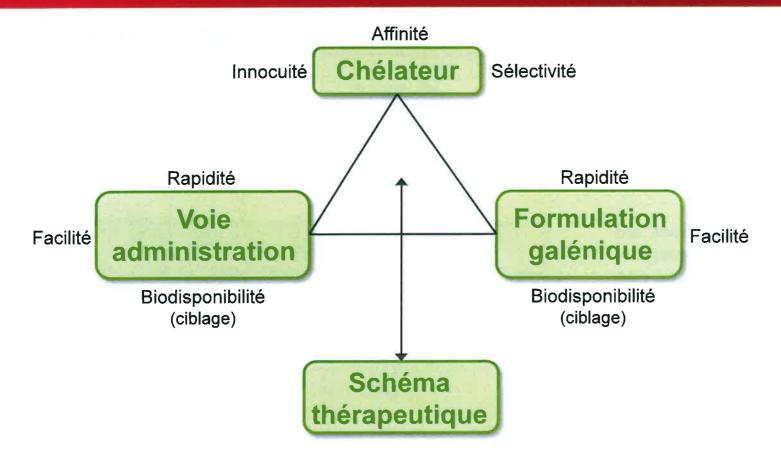
Phosphonates


«PLATE-FORMES» MOLĖCULAIRES

- Calix[4]arènes (Leydier A, Tetrahedron, 2008a; Migianu-Griffoni E, Tetrahedron, 2009)
- Dérivés des EDTA et DTPA (Leydier A, Tetrahedron, 2012)
- Chaines carbonées 5 carbones, diaminées (Leydier A, Tetrahedron, 2008b)
- Binols (Leydier A , Tetrahedron Letters, 2011)
- ✓ Evaluation de leur affinité in vitro pour l'U et comparaison à celle du 5-LICAMS ou du tris(EHBP)
- Nouveaux chélateurs souvent moins, parfois aussi affins pour l'U que les chélateurs de comparaison à pH 7,4
- ► Le CYCAMS est plus affin que le 5-LICAMS
- ➤ Sélection ou exclusion de caractéristiques structurales

SYNTHÈSE DE NOUVEAUX CHÉLATEURS:

RECHERCHE de CHÉLATEURS AFFINS pour l'URANIUM



- ▶ Un chélateur dipode testé élimine autant l'U que l'EHBP ou le 5-LICAMS
- ▶ Il est plus efficace que le 5-LICAMS pour limiter les dépôts rénaux, mais moins efficace pour limiter les dépôts osseux

Sawicki M, 2008, Eur J Med Chem (CNRS; CEA)

CONCLUSION

- Nécessité de compléter l'arsenal thérapeutique
- → poursuite de recherches coordonnées entre chimistes, biologistes et pharmaciens galénistes.